. by Eq. (4). It has also been sho

. on the initial shape and strengt
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where the terms without subscripts correspond to the three-
dimensional shock. In an analogous manner, Eq. (4) along
with the scalings for ¢, n, and 7 may be used tg/relate the
pressure distribution obtained in a two-dimefisional ex-
periment or a numerical solution of Eq. (3) to that for a three-
dimensional focusing problem.

In conclusion, the focusing of a weak, t
shock wave at a cusp in a caustic has been st
shown that although the focusing is¥ initially three-
dimensional, the flow in the vicinity of th@/aréle is essentially
two-dimensional. The details of the flowsre governed by Eq.
(3); once these are obtained, the pressug# distribution is given
that the similarity
parameter used in Ref. 7 was unnecesgary and, as a result, Eq.
(4) delineates the dependence of thg/resultant pressure levels
/of the shock. For three-
dimensional shock waves satisfyifig the conditions discussed
here, the similitude also allows 5 to determine once and for
all the pressure distribution siffply by analyzing, either ex-

Y ied. It has been

problem.

erences

Approach to the Problems of Shock
ensional Problems,*’ Journal of Fluid

!Whitham, G. B., “A
Dynamics. Part 1. Two-
Mechanics, Vol. 2, 1957, pf

Zwhitham, G. B., *'A
Dynamices. Part 2. Th
Mechanics, Vol. §, 195§, pp. 369-386.

oustique Géometrique, Bruit Ballistique des
et Focalisation,”” Journal de Mécanique, Vol.

ew Appr.oach to the Problems of Shock

4, 1965, pp. 215-26 )
4Hayes, W. I, “Similarity Rules for Nonlinear Acoustic

Propagation thrgs gh a Caustic,”" 2nd Conference on Sonic Boom

Research, NASAfSpecial Publication No. 180, 1968, pp. 165-171.

# and Kevorkian, J., ‘“‘Supersonic-Transonic Flow

» Thin Airfoil in a Stratified Atmosphere,” SIAM

Journal of Agblied Mathemarics, Vol. 33, 1977, pp. 8-33.

agl, B. and Kulkarny, V. A., ““The Focusing of Weak
s,”" Journal of Fluid Mechanics, Vol. 73, 1976, pp. 651-

, M. S. and Seebass, A. R., ‘‘Focusing of Weak Shock
ol 'an Aréte,”” Journal of Fluid Mechanics, Vol. 88, 1978, pp.

SCrffner, M. S., “'The Focusing of Weak Shock Waves at an
Axisyfimetric Aréie,” to appear in the Journal of Fluid Mechanics.

AIAA 814276

Approach to Self-Preservation
in Plane Turbulent Wakes

K. R. Sreenivasan*®
Yale University, New Haven, Conn.

Introduction

HE purpose of this Note is to examine the manner in

which moderate Reynolds number, plane turbulent wakes
behind wake generators of different shapes approach a unique
self-preserving state, and to point out what appear to be some
surprising features of the process.
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Experiments

Table 1 lists details of the several wake generators used in
the experiments discussed here. Except for two cases, ! all of
the wakes were generated in an open-circuit suction-type wind
tunnel with a contraction ratio of about 10, and a 30 cm
square, 4.27 m long test section. The wind speed was constant
to within about 1.5% and the freestream turbulence was
about 0.15%.2 All mean velocity measurements were made
with a round pitot tube of 1 mm o.d. using a micromanometer
capable of reading 0.05 mm alcohol; no corrections for finite
turbulence levels were attempted for the pitot measurements.

Background

By self-preservation, we mean here that the mean velocity
and the Reynolds shear stress distributions must be in-
dependent of the streamwise position when normalized by the
same velocity and length scales. In the asymptotic limit of
vanishing velocity defect, a two-dimensional self-preserving
(linear) turbulent wake is characterized by constant values of
two parameters defined in Ref. 7as W= (w,/U) V(x/0) and
A=5/~/x8. Here, w,, is the maximum of the velocity defect w,
& is the half-wake thickness given by the distance from the
centerplane to where the defect is half the maximum, x and y
are, respectively, the distances from the trailing edge of the
wake generator and from the wake centerplane, and 6 is the
momentum thickness defined by

Ozr; (w/wp) (1—-w/w,)dy ¢3)

If the asymptotic self-preserving state is unique, the
parameters W and A must assume universal values, say W™
and A*. As appropriate to small but finite defect wakes, the
pature of correction terms to ¥™ and A* cannot be assessed
on the basis of linear theory alone, but it was argued in Ref. 8
that the correction terms are of O(w;/U). Thus, the behavior
of the measured values of W and A against w,/U gives us a
gross indication of the manner in which the unique asymptotic
state (if one exists) is approached.

Results

Figures 1 and 2 show, respectively, the variation of the
parameters W and A with w,/U, corresponding variation in
x/6 ranges typically from about 10 to about 1000. (Where
necessary, convergence corrections according to the
suggestions of Refs. 2 and 9 have been applied to the data.)
Although it is not surprising that different wakes approach
self-preservation through different routes, the degree of
variability and the non-monotonic behavior shown by W and
A was unexpected. It should be emphasized that both 6/6 and
w,/ U showed monotonic variations with x/6 for all of these
wakes. Although all wakes seem to approach the asymptotic
values W* and A* indicated on the figures (more about which
will be said shortly), thus indicating an approach to the self-
preservation state, there are substantial differences among
them even when the defect ratio is as low as 5%: the large
eddies seem to remember the manner of their generation even
so far downstream! The wake behind a twin-plate generator
appears to have the simplest behavior and attains self-
preservation in the shortest distance (as was indeed found by
Narasimha and Prabhu,” who first used it) probably because
large eddies in the flow are rendered weak by the nature of the
mean strain field that occurs there.

The relatively simple behavior of the wake parameters in a
twin-plate gencrator wake Jed us to make detailed far-wake
measurements with the sole purpose of determining the
asymplotic values W* and A®. These were determined by
extrapolating linearly to zero defect the parameters W and A
obtained from measurements in the region of small but finite
defect. The chief conclusion of these measurements, reported
elsewhere,® can be stated as W*=1.63£0.02, and
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Table1 Summary of wake data examined

Wake generator Symbol Source UL/v ue/v CD Aspect
ratio
Circular cylinder (¢} Townsend! £35-8100 4204500 1-1.1 -
Prabhu? 4320 2400 1.1
U % Bhutiani® 5720 3200 1.1 64
— .
Prasanna Kumar 5460 3060 1.1

A e

Square cylinder

Prasanna Kumar

y

U 4 2240 1890 175 144
! ‘// =2
— % ; 21 o
v 2240 2240 1.45 100
U
Lo DLy 0
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U —r600 025 Chevray and 6.5%105 3160 .0016 310
““’/_r - Kovasznay®
N —
3.2
U _{_ 152 e Prasanna Kumar® 106 4000 .0013 96
- [ e
| S————
Twin-plate ) P Prabhu’ 2.8x10%~ 1020~
59 4x10" 1500
U 074 64
e Sreenivasan® 3,2x10% 1180
b =24 —
T l i ¥ 08 T ” i T » T
ot
\ O CIRQLR OILIER §35 <R 810 -
L8 7 07r D]mmm 7
. o E OUMER R =224
ASPTOTC VALLE ' + FLATATE B30 & 400
o - 3 o « o
i6F e 0.6 @ MIMRAE 100R <1500 ]
%o
14 J "
W ' 05F -
12 . 04} J
O CIRCULAR CYLHEKR 304K €8I0
g} SIWE OUTER =220 ‘ .
IO &7 Fur Pt B30 & 4000 7 0.3 22 bt E
®  THAAT ﬁmsﬂasl‘m b s LT
1 i 1
08 g 0.02 005 0.10 0.20 050
. i . ) wy /U
0.02 0.0% 0.10 0.20 0.50 Fig. 2 Variation of the wake parameter A with the defect velocity

wo/ U
Fig. 1 Variation of the wake parameter W with the defect velocity
ratio.

A*=0.320.005. These are the asymptotic values marked in
Figs. I and 2. One further relevant conclusion of Ref. 8 is that
1,=2.06 and I, =1.51 for a self-preserving wake, where the
integral parameters /, and /, are defined as

1,,=S_w (wiwo)d(y/8), n=12 @
Now, it follows from Eqs. (1) and (2) that

6/8= (wy/U) (I, = (wo/U),) 3

If the velocity profiles preserve their shapes when scaled on
w, and &, a plot of 8/6 vs w;/U must be unique for each wake.

ratio.

If, further, this shape is the same for all wakes, data from all
of them must collapse onto a common curve. Figure 3 shows
that all of the data do indeed collapse together from almost
immediately downstream of the wake generators, suggesting
that all of the wakes—no matter how created—quickly
assume essentially the same shape of mean velocity profile.
Also shown in Fig. 3 is Eq. (3) with /, and I, appropriate to
the self-preserving wake, As this curve represents all of the
data fairly well for w,/U0.15, it is clear that the common
mean velocity shape attained under this condition is indeed
that of the asymptotic self-preserving wake itself. However,
W and A have not attained a common value at this stage (see
Figs. 1 and 2); this can only mean that the Reynolds stress
profile does not preserve its shape on w, and —an ob-
servation found to be true from very limited measurements.
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Fig. 3 A plot of 8/8 vs w,/U. For wy/Us0.05, Eq. (4) and the
linesr approximation to it sre indistinguishable.

Some relation can be expected to exist between the near-
wake behavior and the boundary layers just before they leave
the wake generators. The boundary layers near the trailing
edge of both flat plates examined here were known to be
turbulent; the boundary layers on the bluff bodies become
unstable and turbulent soon after they separate. In view of
this, it is quite surprising to find that /6 values for all wakes
seem to approach, as w,/U-1, the value (=0.856) ap-
propriate to a flat-plate laminar boundary layer (with § and é
both defined as done here for wakes); although the
corresponding number for a turbulent boundary layer
depends on the Reynolds number, it is at least an order of
magnitude higher. As our measurements stopped short of
extending all the way up to the wake generator only by a
dozen or so momentum thicknesses, the last result should
simply mean that, within a few momentum thicknesses after
leaving the wake generator, the flow quickly readjusts as if the
boundary layers leaving the wake generator were laminar, a
curious behav.or worth a closer examination!

At lower Keynolds numbers (R, of the order of 300 or
lower), preliminary measurements behind flat plates showed
an even more complex behavior in which the parameters W
and A showed discontinuous jumps when plotted against
wo/U. Presumably, some of this is associated with the
Karman vortex patterns that have an important influence on
flow development at these Reynolds numbers.
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Transformation of the Equation
Governing Disturbances of a
vo-Dimensional Compressible Flow

E.J.Kerschen®* and T. F. BalsaT
(General Electric Corporate Research and
Development Center, Schenectady, N. Y.

HIS Née concerns the propagation of small amplitude
inviscid §nd unsteady disturbances on steady nonuniform
mean flows. Rroblems of this type arise in a wide variety of
fields, including aerodynamic noise, flutter, forced vibration,
and buffeting ©f structures; for example, when a purely
vortical disturbdce is incident on an airfoil at large angles of
attack. Indeed, $he present discussion is restricted to the
analysis of the distprtion of vortical and entropic disturbances
as they convect, with the mean flow, past a “‘bluff”” object
(flow separation is§gnored) and to the generation of certain
irrotational fields tBat permit the enforcement of boundary
conditions on the bady surface. A classical approach is to
reconstruct the veloclly field from the vorticity and then to
obtain the pressure fil}d from the former.! Goldstein? has
developed a much sifppler approach which requires the
solution of a single inhofpogeneous wave-like equation for the
irrotational (roughly thé acoustic) field. Because the mean
flow is nonuniform, this €guation has variable coefficients.
The purpose of this Notis to show that, when the behavior
of the two-dimensional afld compressible mean flow is ap-
proximated by the tangent ggs relations,? the inhomogeneous
wave equation can be transf§rmed into a much simpler form
involving only one varialje. coefficient. Further sim-
plifications are possible whengthe mean flow is a small per-
turbation of a uniform stream.?
We consider small amplitude @isturbances superimposed on
a steady, irrotational, compresle mean flow. Linearizing
the equations of motion about th& mean flow, and neglecting
viscous effects, Goldstein? has sHpwn that the perturbations
are described by the following equaj

u'=vG+vy M
s =b(X=1U 0% : (22)
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