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Abstract. A detailed accuracy analysis is presented for moments, up to order four, of both velocity 
(horizontal u and vertical w) and scalar (temperature 8 and humidity 4) fluctuations, as well as of the 
products uw, w0 and wq, in the atmospheric surface layer. The high-order moments and integral time 
scales required for this analysis are evaluated from data obtained at a height of about 5 m above the 
ocean surface under stability conditions corresponding to z/L = -0.05. Measured moments and pro- 
bability density functions of some of the individual fluctuations show departures from Gaussianity, but 
these are sufficiently small to enable good estimates to be obtained using Gaussian instead of measured 
moments. For the products, the assumption of joint Gaussianity for individual fluctuations provides a 
reasonable, though somewhat conservative, estimate for the integration times required. The concept of 
Reynolds number similarity implies that differences in integration time requirements for flows at 
different Reynolds numbers arise exclusively from differences in integral time scales. A first approxima- 
tion to the integral time scales relevant to atmospheric flows is presented. 

1. Introduction 

The accurate measurement of momentum, heat and moisture fluxes is of 
paramount importance to the study of the atmospheric surface layer over ocean and 
land. Unfortunately, measurements published in the literature exhibit considerable 
scatter. While technical difficulties associated with these measurements may 
account for part of the scatter, there is also the possibility that this scatter is due to 
non-stationarity of the flow and/or inadequate length of record used to determine 
the fluxes. To establish the record length required to determine, within given limits, 
the average values of products, information about the (not usually available) 
high-order moments of products is required. For this reason, few error analyses are 
available in the literature. The only exception is Wyngaard (1973), who provided a 
useful estimate of averaging times of products uw and wf3 (where u and w are the 
horizontal and vertical velocity fluctuations and 8 is the temperature fluctuation), 
by considering measurements of the 1968 Kansas field experiment, and making a 
rough order of magnitude assumption on the integral time scales associated with 
these products. The difficulty, as stated by Stewart (1974), has been for some time 
that “the theory of the statistical behaviour of variables such as the product is not 
well understood”, because of the highly non-Gaussian nature of the products. 
Fortunately, this assertion is not really valid because a large body of information 
(e.g., Antonia and Atkinson, 1973; Gupta and Kaplan, 1972; Lu and Willmarth, 
1972) is now available for laboratory turbulent boundary layers, on the shapes of 
probability density functions and on high-order moments of products. These stud- 
ies have also revealed that the assumption of joint Gaussianity of the individual 
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fluctuations is in reasonable agreement with measurements in the fully turbulent 
part of the boundary layer. 

In this paper, this favourable situation is exploited to provide error statistics of 
high-order moments (up to order four) of products as well as individual fluctuations 
forming the product. The moments and integral time scales, for individual fluctua- 
tions as well as products, are evaluated for data obtained from an experimental 
investigation of the marine surface layer in Bass Strait (Antonia et al., 1977). 
Similar estimates are also provided with the assumption of Gaussianity for the 
individual fluctuations. Present data on high-order moments are discussed in 
Section 4, and compared with other similar measurements in both laboratory and 
atmospheric boundary layers. Using the concept of Reynolds number similarity, it 
is argued that the results inferred from the present data (at least those not involving 
temperature fluctuations) are generally valid for surface layers of zero or near-zero 
values of --z/L. Consequently, in accuracy estimates of moments of products, use 
of laboratory values (obtained in neutral boundary layers) for the required high- 
order moments may be acceptable in atmospheric flows with small but non-zero 
--z/L; the only crucial factor is the integral time scale of products as well as power 
of products, relevant to the particular situation. A further simplification is possible 
because the ratio of integral time scales of higher powers of fluctuations to that of 
the first power is essentially the same as for laboratory flows. A first approximation 
to this ratio is explicitly given. For the integral time scales of the first powers 
themselves, it is argued that at least some of the present non-dimensional results 
would be valid for other neutral or near-neutral atmospheric surface layers. The 
accuracy of the present data on integral time scales is also assessed in the appendix. 

2. Experimental Technique 

Measurements of u, w, 8 and 4 were recorded on Kingfish B, the ESSO-BHP 
natural gas platform which stands in Bass Strait (148” 9’E, 38” 36’S) about 80 km 
off the Gippsland coast of Victoria, Australia. The instruments for recording the 
above signals were mounted at a height z of about 5 m above the mean water level 
(on a vertical pipe), supported at the end of a horizontal boom fastened to one of 
the western platform legs. The horizontal velocity fluctuation u was obtained with a 
hot wire (5 pm diameter, -0.8 mm length) operated by a DISA 55M01, constant- 
temperature anemometer. The vertical velocity fluctuation w was obtained using a 
Gill propeller. Temperature B was measured with a cold wire (0.6 pm diameter 
platinum, -0.8 mm length) operated by a constant-current anemometer. The value 
of the current was low enough (-0.1 mA) for the wire to be sensitive to tempera- 
ture fluctuations only. Low-frequency temperature fluctuations were also obtained 
by a thermistor. The humidity fluctuation 4 was obtained using a Lyman-alpha 
humidiometer. Neither the hot-wire anemometer nor the Lyman-alpha humi- 
diometer was linearized. Over the whole experiment, wind conditions were sta- 
tionary and corresponded to a z/L x-0.05, where L is the Monin-Obukhov 
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length. It is essentially this observed stationarity that enables a meaningful 
definition of integral scales and high-order moments. 

Voltages proportional to u, w, 9 and 0 fluctuations were recorded on a four- 
channel Hewlett-Packard 3960 FM tape recorder. The recording speed was 
24 mm s-l (-3 dB point of tape recorder 375 Hz). The tapes were played back and 
digitized at a sampling frequency of 20 Hz in the Faculty of Engineering Computing 
Centre at the University of Sydney. Prior to digitization, the signals were low-pass 
filtered with the -3 dB cut-off frequency set at 10 Hz. The digital records were 
processed both on a PDP 1 l/45 computer and on an ICL 1904A computer at the 
University of Newcastle. Further details of experimental conditions and techniques 
may be found in Antonia et al. (1977). 

3. Accuracy of Measurements 

All moments of u, w, 8 and 4 were computed from the relation 

(X”)’ ; x”p(x)dx, (1) 

-cc 

where p(x) is the probability density function of x, normalized such that 
rm p(x) dx = 1. All probability density functions were generated for numbers of 
equal bins varying between 128 and 1024. For some test cases, moments computed 
according to Equation (1) were in excellent agreement with those computed 
directly from the time series according to the relation 

T 

(xn)=+- j- x”(t)dt. (14 
0 

For the products uw, w8 and wq, however, because of the sharp peaks in the 
probability density functions, greater accuracy can be expected if moments are 
computed from the time series. Consequently, all moments in the case of products 
were computed according to Equation (la). 

Records of duration varying between 20 and 66 min were examined, and an 
average obtained over a number of runs varying between 9 and 15. Running 
averages of normalized moments of u and w are shown in Figures 1 and 2 for a 
typical run. Although the discussion in this paper is restricted to moments only up 
to order four, higher order moments are also presented here to provide a useful 
indication of the accuracy of the sixth- and eighth-order moments, which are used 
in error estimates of the third- and fourth-order moments, respectively. Figures 1 
and 2 indicate that flatness, superflatness (i.e., ((x -(x))~)/(T~) and hyperflatness 
(i.e., ((x -(x))“)/(+~) factors converge to within about 10% of their final values in 
about half the duration of the total record used to obtain the present statistics. Here 
a, is the standard deviation of x defined by gX = ((x -(x))*)“‘. In the case of 
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Fig. 1. Variation with record length of the normalised central moments of the horizontal velocity 
fluctuation. Each block corresponds to a duration of 4.267 s. 
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Fig. 2. Variation with record length of the normalized central moments of the vertical 
velocity fluctuation W. 
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odd-order moments, the convergence is poorer (especially for U) than for even- 
order moments, as the trend of the even-order running moments is overemphasized 
in odd-order moments. It is worth noting that all even-order moments, up to the 
eighth, of u and w are remarkably close to the appropriate Gaussian values. 
Moments of other quantities show a qualitatively similar behaviour. (This fact is 
extensively used in the error analysis in this section.) Odd-order moments of u 
show a somewhat larger departure from Gaussianity than those of w. 

Running central moments of the product uw are given in Figure 3. Again, there 
is a considerable trend in odd-order moments. Greater reliance can therefore be 
placed only on even-order moments up to 4, both in the case of fluctuations and 
their products. 
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Fig. 3. Variation with record length of the normalized moments of x = uw - (uw). 

An estimate of the accuracy of the first-order moment may be obtained with the 
use of an expression given by Lumley and Panofsky (1964) or Tennekes and 
Lumley (1972) i.e., 

In Equation (2), E* is the mean-square relative error, determined by integration 
over a duration TX, of the mean value of a stationary random signal x whose true 
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mean and variance are (x) and (x2>, respectively, and whose integral time scale is 71. 
Expression (2) can be extended to estimate the mean-square error of any moment 
of order n, by replacing x by X” and 71 by the appropriate integral time scale T, 
associated with x”, i.e., 

where F2, = (x*“)(x*)” and F, = (x">/(x*)"'*. In the case of the product xy (x and y 
may represent U, w, 8 or q), it is convenient to discuss moments of xy - (xy ), rather 
than moments of xy. 

Values of the integral time scale rn were obtained from the autocorrelation 
curves of x” or (xy -(xy))“. Details of the method adopted of deriving autocor- 
relations, as well as of their accuracy, are discussed in the appendix. The magnitude 
of r1 normalized by the ratio z/U, as well as the ratio 7,/r1 (n I 4) are given in 
Table I for the quantities U, w, 8, q, uw - (uw), we -(we> and wq - (wq). Wyngaard 

TABLE I 

Integral time scales ri and the ratio r,/ri (U = 9.1 m s-i, z = 5.5 m). Numbers in 
parentheses are values obtained from sub-records of 400-s duration. Numbers in 
square brackets against u and q are evaluated from time series directly, according 

to Equation (A2), with Z’i = 80 s 

Quantity dJ/z n=2 n=3 n=4 

U 3.9 0.70 0.74 0.50 
l3.81 (0.60) (0.72) (0.43) 

w 1.5 0.56 0.64 049 
e 4.9 0.73 0.70 0.51 
4 [:::I 0.69 0.73 0.53 

uw -(uw) 1.2 0.80 0.50 0.39 
we -(we) 1.2 0.73 0.67 0.44 
wq-(wq) 1.1 0.64 0.59 0.48 

(1973) assumed that T* = z/U to obtain estimates of integration times required to 
achieve some specified accuracy in second-order moments of w and 8. In this case, 
it follows from Equation (2a) that 

(3) 

when the flatness factor of w or 8 is approximately equal to 3. This last assumption 
appears to be reasonable (Section 4) for all the fluctuations considered here. The 
present value of T for w* is in reasonable agreement with that obtained from 
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Equation (3) since the scale r2U/z is close to unity in the case of w* (Table I). For 
the second moments of u, 0 and 4, however, Equation (3) underestimates the 
integration time significantly as the corresponding integral scales are higher than 
z/U. For obtaining flatness factors within a specified error, similar estimates for the 
required integration time can be made using r4U/z obtainable from Table I, 
provided reasonable estimates for the eighth-order moments are available. Sample 
data shown in Figures 1 and 2 provide at least partial proof that the eighth-order 
moments obtained in the present runs are reasonably accurate for this purpose. The 
resulting estimates of integration times are shown in Table II. The corresponding 
estimates using moments appropriate to a Gaussian variable (i.e., F4 = 3 and 
Fs = 105) are very nearly the same because, as mentioned above, all even-order 

TABLE II 

Integration times required to determine moments to accuracies of 10% and 20%. 
For products, numbers in parentheses are estimates based on Equation (10) using 

the measured value of r 

Time T, min 

X 

Present estimates Wyngaard (1974) 

8’0.1 E = 0.2 E =O.l E = 0.2 

u2 
w2 
o2 
4* 
U4 

4 

; 

q4 

(uw -(uw))* 

(we-(we))2 

(w-(w))* 

(uw -(uw))3 

(we-(we))3 

(WI -(w4))3 

(uw -(uw)y 

(we-(we)y 

(WI - (w4))4 

12.1 
3.4 

18.1 
10.8 
53.1 
17.6 
56.2 
36.8 

20.4 
(20.2) 
15.8 

(16.1) 
10.3 

(14.1) 
150 

(218) 
389 

(310) 

(1::) 
136 

(218) 
90.0 

(231) 
85.6 

(300) 

3.0 4.0 1.0 
0.9 4.0 1.0 
4.5 - - 
2.7 - - 

13.3 21.5 5.4 
4.4 21.5 5.4 

14.1 - - 
9.2 - - 

(E) 
3.9 

(4.0) 
2.51 

(3.5) 

(Z.5) 

(;:.S) 

$5) 
34.0 

(54.5) 
22.5 

(57.8) 
21.4 

(75.3) 

- - 
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moments up to the eighth are close to Gaussian values. From Table II, it appears 
that, for the integration times used in the present runs, the second- and fourth- 
order moments are accurate to within about *lo%. Unfortunately, to obtain 
odd-order moments to the same accuracy, very long integration times are neces- 
sary. For example, to obtain the skewness values to within *20% accuracy, Equa- 
tion (2) suggests that an integration time of the order of 24-3 hours is required for u 
and 8, and substantially longer record durations for w and 4. The reason for this is 
the numerically small value of skewness; if the skewness is exactly zero, the 
integration time required is indeterminate. A less pessimistic and a more realistic 
error specification for near-zero odd-order moments should perhaps be in terms of 
an absolute error band, say *O. 1. From this point of view, integration times used in 
the present runs seem quite adequate for the skewness values too. 

In the case of uw - (uw), wf3 -(we> and wq - (wq), the integration times required 
are 

UTuw-(uw) 2 TlU &v-(uw, =-7---- -- 1 
z & z ( U* ) 

UT,e-he, 2 71u 
=-z------ 

Z ( 

&-(we, 
-7-T-l 

E z u,e* 1 
(54 

and 

uT,,+V,, 2 TlU &w,) 

Z 
=--z- 

( 
v-1 E z U*Q* ’ (5b) 

where U, (= -(uw)~“/U~~& 8% (= (wt?)/U,) and Q* (= (wq)/U,) are the friction 
velocity, temperature and humidity, respectively; here, 5 m was used as reference 
height. Wyngaard assumed that 71 -z/U and found that experimental results 
under nearly neutral conditions indicated a value of about 10 for the quantities 
within the circular brackets in Equations (4) and (5a) so that 

UTuw-(uw, z UTwwwe) 20 zz--- 2 . (6) 
Z Z & 

No estimates were given for the corresponding quantities in Equation (5b). The 
present values of a,,-t,,,/Uz, uw,+(,,+~/(U&J and aw,-(,,J(U*Q,) and appro- 
priate integral time scales given in Table I lead to 

UT,,-(,w) 30 
Z 

=--T & 

and 

U&w-~,w) 44 z- 2, 
Z & 

@b) 



ACCURACY OF MOMENT OF VELOCITY AND SCALAR FLUCNATIONS 349 

corresponding to Equations (4), (5a) and (Sb), respectively. Estimates given by 
Equations (7) and (8a) are larger than Wyngaard’s estimate (6). The integration 
time required for (we) appears to be the largest and is about twice as large as that 
for (uw). 

In the case of higher-order powers of the products, estimates of T given in Table 
II were obtained from measured values of r,U/z (Table I), and the measured 
flatness and higher-order moments of products. For the third- and fourth-order 
moments of the products, the values of T given in Table II can be considered only 
as rough estimates, since the sixth- and eighth-order moments of products are more 
difficult to determine accurately than those of individual fluctuations (cf. Figures 1 
and 3). It is worth noting that because of the substantially non-zero values of 
odd-order moments of the products, it is possible to obtain them to a better relative 
accuracy than those of the individual fluctuations, using records of reasonably long 
duration. For the present averaging times, Table II suggests that the error in 
estimating the third- and fourth-order moments is about 20% or less, and probably 
less than 10% in the case of second-order moments. 

For products, an alternative plausible method of estimating integration times 
would be to use moments of the product xy, under the assumption that the joint 
probability density p(x, y) of x and y is Gaussian *. For this case, the product xy has 
the probability density (see, e.g., Antonia and Atkinson, 1973; Lu and Willmarth, 
1972) 

p(xy) = exp [{r/(1 - r2)hl 
7r(l- r2)1’2 (9) 

where r is the correlation coefficient (xy)/ aXcry and K0 is the zeroth-order modified 
Bessel function of the second kind. Antonia and Atkinson (1973) derived expres- 
sions for the skewness and flatness factor of xy. General expressions for the nth 
order moments of the products were given by Lu and Willmarth (1972) and 
Sreenivasan et al. (1977). It may be useful here to write explicitly the first eight 
moments of xy : 

(.v)=r 

((xy - (xy))2> = 1 + r2 

((xy -(xY))~) = 6r + 2r3 

((xy - (xy))‘) = 180r + 320r3 +44r5 

((xy-(~y))~)=225+283%~+2715r~+625r~ 

((xy-(xy))‘)=9450r+42210r3+28014r5+1854r7 

((xy - (xy ))‘) = 11025 + 270900r2 + 630630r4 + 263284r6 + 165 13r* . 

(10) 

* In the present experiments, measured isoprobability density contours of p(x, y), where x and y are u, 
W, 0 or q, did not differ significantly from the Gaussian elliptic contours, so that this approximation 
should lead to reasonable error estimates, at least to a first approximation. 
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For the particular case when r = 0, (xy ) = 0 and ((xy )“) = (x “)( y “); the hyperflatness 
(xy)8/((xy)2)4 = (105)2, i.e., the square of the hyperflatness factor of individual 
Gaussian components. For r = kO.25, and ho.5 (which approximately cover the 
range of present measurements), the hyperflatness values are approximately 2.4 x 

lo4 and 3.3 X 104, respectively. Although these are roughly of the same order of 
magnitude as the measured ones, in general, Gaussian high-order moments are 
larger than the measured values. Thus, estimates based on Equation (lo), also 
shown in Table II, yield generally conservative values for the integration times. 

It is worth emphasizing that when the accuracy of high-order moments of 
products is assessed by the use of formula (2a), it is important that the moments in 
(2a) correspond to those for a Gaussian joint probability density function, and not 
simply, as implied by McBean (1974) to those for a Gaussian probability density 
function of the individual variables. The reason is that for the products, integration 
times are larger and increase much faster with the order of the moment than for a 
Gaussian variable. Using typical values of 10 and 2 x lo4 for flatness and 
hyperflatness, respectively, it is seen that as it increases from 1 to 2, and then from 
2 to 4, the factor (F2,/F’,-- 1) in Equation (2a) increases by about 10 and 20, 
respectively, while the corresponding increases would be about 2 and 5, respec- 
tively, for a Gaussian variable. 

Finally, for a given quantity X, Equation (2a) may be rewritten as 

TJJ/r = m,/E2 (114 

when F, and F2,, in Equation (2a) are evaluated from measurement. In the case 
when F, and F2” in Equation (2a) are evaluated from the Gaussian probability 
density function for the fluctuations, and from Equation (9) for the products (using 
measured values of r), Equation (1 la) may be replaced by 

T,U/z = g,/c2. (1 lb) 

Then, the present error analysis can be summarized in terms of the two constants 
m, and g, listed in Table III. 

TABLE III 

Constants m, and g, in Equations (lla) and (1 lb) 

Liz 
u3 4 u 
w* 
W3 

W4 

o2 

e3 

e4 

q2 

2 

q4 

12 
150 

53 
3 

- 

17 
18 

180 
56 
11 

37 

12 uw -(uw) 30 39 
- (uw -(uw)y 20 20 
53 (uw -(uw)P 149 217 

3 (uw - (uw,)” 134 217 
- we-(we) 64 45 
17 (we-(we))* 16 16 
14 (we -(w6q3 386 308 
- (we-(we)y 90 229 
53 w-(w) 44 12 
11 (wq -(w))2 10 14 
- (wq-(wq))3 98 145 
47 (wq --(w)T 85 298 
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4. Discussion of Moments of Velocity and Scalar Fhtuations 

Figure 4 shows the normalised probability density functions of U, W, 6 and q for a 
typical run (duration 57.6 min) in the present experiment. Also shown are Gaussian 
functions with the same mean and variance. Mean values and standard deviations 
of skewness and flatness factors of the quantities u, w, 0 and q obtained for a 
number of runs are shown in Table IV. Both u and 8 are significantly skewed while 
q and w are remarkably symmetric about their mean values. The flatness factor of q 

shows the largest deviations from the Gaussian values of 3. The negative sign of S, 
and the positive sign of SO are consistent with the notion that probability density 
functions of u and 19, at a height of 5 m above the sea surface under nearly neutral 
conditions, reflect the arrival of lower momentum fluid from the warm sea surface. 

1-6 

1-2 

08 

06 

Pk/o;l 

0 

0 

0 

Fig. 4. Normalized probability density of fluctuations 
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TABLE IV 

Skewness and flatness data 

Quantity No. of runs Mean Standard 
deviation 

Standard error 
of mean 

SU 16 -0.35 *o.os 0.01 
FU 16 2.94 0.23 0.06 
SW 22 0.02 0.10 0.02 
FW 22 3.16 0.13 0.03 
SO 18 0.39 0.40 0.09 
FB 18 3.05 0.39 0.09 
S, 16 -0.04 0.10 0.03 
F4 16 2.67 0.16 0.04 

This idea is supported by the sign of S, but not by that of S,. The experimental 
correlation 

z/L = -0.0137 exp (4.396 S,) 

obtained by Tillman (1972) for over-land measurements seems to be in fair 
agreement with the present data. For t/L = -0.05, the value of the stability 
parameter that prevailed over most of the present runs, correlation (12) yields 
Se = 0.3, while the measured average value is about 0.4. Considering that this 
correlation was obtained from data with significant scatter, and the possible error in 
skewness measurements in general, the present value is in good agreement with 
comparable measurements over land. 

Standard deviations of products WV, we and wq about their respective means, are 
given in Table V, normalized by U,, 8* and Q*. Also included are values obtained 
from Equation (10) appropriate to the probability density function (9). Although 
the mean value of (+Uw-(Uw) is significantly higher than the value of about 2.4 

TABLE V 

Regression lines of standard deviations of products on wind speed Us (m s-r) and non-dimensional 
height z/L. Values in parentheses in the second column correspond to the probability density (9) 

Std. deviation 

Parameter Mean f std. dev. Linear regression (+ std. dev.) Correl. Intercept Slope 

%44w~/ u: 3.49hO.36 3.13-6.242/L (0.39) 0.18 *0.53 *10.03 
(4.25) 5.44-0.22Us (0.37) 0.38 *1.50 *0.17 

u,+<,~,/U,B, 5.15* 1.06 5.546+6.852/L (1.15) 0.15 jzO.86 ~1~13.86 
(4.58) 4.543 +o.o7u, (1.16) 0.07 +2.59 *0.30 

CT,,-+,,/U,Q* 3.19kO.66 4.779-27.662/L (0.72) 0.34 zt1.49 zt28.94 
(2.80) 5.276-0.23U5 (0.73) 0.17 14.49 10.50 
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obtained by McBean (1974) for z/L = -0.05, it is in good agreement with the range 
of values for the Kansas experiment reported by Wyngaard (1973). The present 
mean value c~,+(,e) is significantly higher than either Wyngaard’s or McBean’s 
value. These differences in the rms levels are perhaps caused by large-scale fluctua- 
tions which contribute little to the stress or scalar fluxes. McBean (1974) suggested 
that the ratios (T,,,,-(~,,,,/U$ and CT,,+(,,&(U&,) might be considered as measures 
of efficiency for momentum and heat transfer processes, respectively. On the basis 
of this criterion, the results of Table V would indicate that the heat transfer process 
may be more efficient than either humidity or momentum transfer processes. 
Linear regression of CT on z/L and the wind velocity at the 5-m height are also given 
in Table V. The statistical significance of the regression lines is poor (because of the 
low correlation coefficient and small range of z/L or U5) but the trend of the 
variations of u vs z/L is in agreement with the results of McBean and Wyngaard. In 
particular, the efficiency of both momentum and moisture transfers would be 
impaired, whilst the heat transfer efficiency improves, as instability increases. 

A comparison between the measured probability density functions of products 
UW, we and wq (centered about their means), and the probability density function 
(9) shown in Figure 5, suggests that, over a significant range, the assumption of 
joint Gaussianity is good for the pairs of fluctuations (u, w), (w, 0) and (w, 4). Also 
shown in the figure are the measurements (renormalized here to unity area in the 
present variables) of McBean (1974) over land at a height of 2 m (z/L = -0:06). 
The agreement in the case of uw is good, emphasizing the similarity of momentum 
transfer over land and water. In the case of we, if the two distributions are 
considered typical over water and land, the short negative tail in McBean’s data 
indicates that, over land, during the ‘events’ (w >O, 0 <O) and/or (w <O, 8 >O), 
small amplitudes are more probable and large amplitudes less probable than for 
comparable events over the ocean. On the other hand, heat transport over land and 
water, associated with events (w >O, 8 >O) and/or (w <O, 0 <O), seems to take 
place in an essentially similar manner. Considering that u and 8 are negatively 
correlated, these events can be identified respectively with the outward ejection of 
low momentum fluid from warmer water and a sweep towards the sea surface of 
high momentum air parcels. Note also that c0e/8, was significantly higher than 
observed over land at comparable value of z/L. 

Mean values of skewness and flatness factors of the product xy - (xy) are given in 
Table VI. Also given are the correlation coefficient r, and the appropriate Gaussian 
values for the skewness S and flatness factor F. The agreement between the 
measured and Gaussian values of S and F is good in the case of UW, we and uf?, and 
somewhat poor for the products that include the quantity 9. 

According to Priestley (1959) z/L=-0.05 is on the border between free and 
forced convection regimes. Hence, it is important to consider whether the present 
data on moments are valid for more general stability conditions. We note here that 
the transition between forced and free convection regimes is gradual, and different 
‘critical’ values of z/L can be obtained when different flow parameters are 
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Fig. 5. Normalized probability density of products of fluctuations. 

considered. For example, data of Wyngaard et al. (1971) indicate that this transi- 
tion occurs at -z/L = 0.4 when the behaviour of CT,,,/ U, is used as the criterion, 
while a critical value of z/L = -0.04 can be chosen when the behaviour of CT~B/O* is 
considered. For the normalized moments considered here, the appropriate critical 
values are not known a priori. Although Pries (1970) provides data on the skewness 
of u and w for different values of z/L, the trends of these quantities with z/L are 
unfortunately substantially different at .heights of 15-16 m and 90-91 m. 

There are some indications that the present data pertaining to u and w (and 
possibly 4) are not very different from those appropriate to neutral conditions of 
atmospheric stability. Antonia et al. (1977) have already noted that CT,/ U,, u,,,/ U, 
and u,/Q* obtained from present measurements are generally consistent with 
those obtained in nearly neutral surface layers. Further, the present values of about 
-1.4 and 10.8 for the skewness and flatness factor of uw -(uw> are in good 
agreement with the values of about -1.3 and 10, respectively, obtained by 
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TABLE VI 

Mean and standard deviation of skewness and flatness factor of xy - (xy) 

Quantity Flatness No. of 
factor F or runs 
skewness S 

Mean Standard Standard Correlation Gaussian 
deviation error of coefficient flatness or 

mean r skewness 

uw -(uw) 
we-(we) 
w-(v) 
uq -M 
l49-(U9) 
48 - (48) 

uw -(uw) 
we-(we) 
wq -(w) 
uq-(uq) 
uo -(uO) 
40 448) 

F 
F 
F 
F 
F 
F 

s 
S 
S 
S 
S 
S 

15 
12 

9 
10 
11 
10 

15 
12 

9 
10 
11 
10 

10.76 
10.03 

7.73 
8.50 

12.02 
8.99 

-1.42 
+1.08 
+1.24 
-1.96 
-2.02 
+1.89 

1.87 0.48 
1.92 0.55 
0.81 0.27 
1.46 0.46 
3.48 1.05 
1.84 0.58 

0.42 0.11 
0.24 0.07 
0.49 0.16 
0.30 0.10 
0.66 0.20 
0.38 0.12 

-0.25 10.33 
+0.23 10.14 
+0.42 12.06 
-0.62 13.81 
-0.39 11.75 
+0.65 14.01 

-0.25 -1.40 
+0.23 +1.30 
+0.42 +2.09 
-0.62 -2.58 
-0.39 -1.99 
+0.65 +2.62 

Wyngaard and Izumi (1973) in a neutral surface layer over land. Gupta and 
Kaplan* (1972) obtain values of about -1.2 and 11.2 in an isothermal laboratory 
boundary layer at two Reynolds numbers, while Danh (1976) obtained about -1.8 
and 11, respectively, also in a laboratory boundary layer. We know that Reynolds 
number similarity implies that the laboratory values must be equal to the atmos- 
pheric values under near-neutral conditions. The good agreement between the 
present data and the laboratory isothermal data is then a reasonable indication that 
the statistics of uw are not very sensitive to small departures of -z/L from zero. 
This conclusion is supported by the data of McBean (1974) who obtained values of 
-1.3 and 10.2 as averages for all unstable cases he considered; these values 
changed only to -1.5 and 11.7 when some neutral and some stable cases were also 
included. 

On the other hand, the position relating to we is less conclusive. The present 
values of 1.1 and 10 for the skewness and flatness factor of we -(we) are 
significantly lower than McBean’s average values of 2.3 and 16.1, respectively, over 
land under unstable conditions. In view of our earlier remarks on the possible 
differences between heat transfer over land and ocean, it seems difficult to draw 
definite conclusions, based on this evidence, about the effect of stability. We do not 
know of any other comparable statistics of w8 over the ocean. It is worth noting 
however that Danh (1976) obtained 1.6 and 12, respectively, for the skewness and 
flatness factor of we -(we) in a (slightly heated) neutral laboratory boundary layer. 

Corresponding data for wq do not seem to be available in the literature; we 
tentatively expect (remembering that uJQ, is, unlike cre/8.+, consistent with other 

* Both Gupta and Kaplan (1972) and Wyngaard and Izumi (1973) evaluated non-central moments. 
They have here been converted to central moments. 
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measurements reported at small values of -z/L) that the statistics of wq will not be 
as sensitive to z/L as those of we. 

In conclusion, it appears that the statistics of quantities not involving 8 are in 
general not very sensitive to the precise value of -z/L if it is small. The general 
applicability of Reynolds number similarity allows us the use of moments obtained 
in neutral laboratory boundary layers in Equation (2a) for accuracy estimates in 
atmospheric surface layers in which --z/L is small but not necessarily zero. 
However, the integral time scales will have to be evaluated in each case. It is worth 
emphasizing that the concept of integral scales in atmospheric flows is not as well 
defined as in laboratory flows because the distinction between ‘trends’ in mean flow 
and the lowest frequency of interest for turbulence measurements is not clear. 
Generally, in the literature, a high-pass filter is set at some arbitrary value; for 
instance, McBean (1974) uses a value of 0.003 Hz. Consequently, the present value 
of 71 must be considered only as a reasonable estimate. 

However, the ratio T,,/T~ will in general not be sensitive to different methods of 
computing the integral scales, as Table I shows. The considerable reduction in the 
ratio ~,/7i (n > 1) is of some practical importance in the assessment of the accuracy 
of high-order moments. The only theoretical treatment of this problem seems to be 
that mentioned in Lumley (1970). Lumley quotes Alekseev’s calculations for a 
Gaussian process, assuming an exponential form for the autocorrelation function. 
The results are Q/T~ = 0.88 and r~/ri = 0.69. Sreenivasan et al. (1977) examined 
all the available laboratory data on r,Jri and concluded that this ratio behaves in an 
essentially similar manner for all laboratory flows. It would be useful to ascertain if 
this result also holds for atmospheric flows. In Figure 6, a comparison is made 
between the present values of ~,/ri (n ~4) for u and 8 with the corresponding 
laboratory data obtained on the centre-line of a slightly heated axisymmetric 

0.2 - 

0 / I I I I 1 

1 2 3 4 5 6 7 8 

Order of moment 

Fig. 6. Comparison of the ratio TJT, between laboratory flows and atmospheric measurements. 
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turbulent jet. The reasonable agreement with the laboratory data up to 74 suggests 
that, to a first approximation, laboratory data can be used to extrapolate for ~“/rr, 
II 34. Although 7,/7r does not necessarily decrease monotonically, a useful first 
approximation would be 

T,/T~ = 0.82-0.07~ 

With only a knowledge of 71, this result can be used with Equation (2a) to enable 
error estimates to be made. 

5. Conclusions 

To a first approximation, data on high-order moments required for accuracy 
estimates can be obtained using Gaussian values for the individual fluctuations, and 
the values appropriate to the joint Gaussianity assumption for the products. Error 
estimates based on actually measured moments can be obtained using Equation 
(lla) and the constants m, listed in Table III, which correspond to the surface layer 
over ocean for z/L = -0.05. Normalised moments of fluctuations, and at least of 
the product UW, do not differ significantly from those corresponding to neutral 
conditions. The concept of Reynolds number similarity will then suggest that a 
useful approximation to moments can also be obtained from laboratory measure- 
ments in neutral boundary layers. The integral time scales required for this purpose 
will however have to be determined in each case. To a first approximation, the 
present non-dimensional estimates 71 U/z and T,,/T~, obtained from auto-cor- 
relation measurements of powers of fluctuations and products, can be used in 
atmospheric boundary layers. In particular, the ratio T,/T~, which appears to be 
nearly the same for all flows, can be crudely approximated by the relation 

T,/Tl = 0.82 - 0.07n, 

forn>l. 

Appendix: Accuracy of Integral Time Scales 

In this paper, for the purpose of computing integral time scales, auto-correlation 
functions p(t) were generally obtained from inverse Fourier transforms of spectral 
densities computed from an ensemble of sub-records of 50-s duration; in a few test 
cases, sub-records of up to 400 s were used. Although no explicit high-pass filtering 
was employed, the procedure will amount to an effective loss of information at the 
low-frequency end. This is not crucial to the calculation of auto-correlation 
functions provided To<< T,, where T, is the duration of the sub-record and To is a 
measure of the lag time such that p is small for f> To. A characteristic measure of 
To can be taken to be the smallest lag time for which p (To) = 0. This is justified for 
all signals considered here, because the negative magnitudes of their auto-cor- 
relation are not very large. For the present data, some sample auto-correlation 
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functions evaluated directly from the time series showed that To was in the range 
15-20s (~9-12 z/U) for U, 9 and 8, and about 3 s (“2 t/U) for w: thus the 
condition To<< T, is satisfied quite well for w and only marginally for U, 8 and 4. 
Obviously, for lag times f comparable to To, auto-correlation functions of U, 4 and 
6 cannot be trusted, except when sub-records of 400 s were used. Also, because of 
the so-called circular effect (Bendat and Piersol, 1971), it is possible that the values 
of auto-correlation functions are distorted even for t < To. This distortion must 
however be small if ~(t> To)<< 1; in the present case, Ip(t> To)] was always less 
than about 0.1. Some of these problems are discussed more explicitly in 
Sreenivasan et al. (1977). 

These uncertainties are somewhat compounded by the fact that the integral scale 
computed from the relation 

T 

p(t)=& x(t’)x(t’+t)dt’, T+co, I C-41) 
0 

must strictly be zero for a random variable x with zero mean (e.g., Comte-Bellot 
and Corrsin, 1971). Clearly, for all signals whose autocorrelation changes sign only 
once, an upper bound to the integral time scale r1 can be obtained by modifying the 
definition of 71 to include the area under p(t) only up to t = To, provided that 
calculations reproduce ~(t < To) faithfully. Even in cases where To/T, is not very 
small, these modified estimates for the integral time scales should be reasonable. 
This can be seen from Table I, where the present values of 71 are compared, in the 
case of u and 4, with those evaluated according to 

5-l = I /dt> dt, G42) 
0 

with Tl set at 80 s and p(t) evaluated according to Equation (Al). 
The ratio 7,/r1 (n > 1) should however be quite reliable, because of the nearly 

identical manner in which T, (for all n) is affected by these problems. This is 
demonstrated in Table I by comparing the ratio r,,/rl for u obtained by using 
sub-records of 400-s duration, with present values obtained from subrecords of 
50-s duration. 
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