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Using measurements of all three components of the temperature dissipation x in a laboratory boundary
layer, the measured probability density p(x,) of X,, or x averaged over a distance r, is found to be
closely log-normal over a significant range of r. The variance o’ of Inx, follows the relation
o’ = A +pIn(L/r), with p = 0.35, where L is an integral scale of turbulence. High order moments, up
to order 5, of x, show a power-law variation with r/L. With increasing order of the moment, the power-
law exponents become increasingly smaller than the corresponding values implied by assumed log-
normality of p(x,) but are consistent with the bounds given by Novikov’s theory. It is suggested that the
observed close agreement with log-normality of p(x,) may be misleading when sufficiently high order

moments of x, are considered.

INTRODUCTION

In their treatment of the refined similarity hypothesis
which takes into account fluctuations of the dissipation
field, Kolmogoroff! and Obukhov? have suggested that
the probability density of €,, the dissipation averaged
over a sphere of radius » (v << L), is log-normal. They
also assumed that the variance o of In€, may be given
by

o?=A+uln(L/7) , (1)

where u is presumably a universal constant, L is an in-
tegral scale of turbulence, and A is a constant that may
depend on the macrostructure of the flow. The two pre-
vious assumptions taken together have, for convenience,
sometimes been referred to as Kolmogoroff’s third hy-
pothesis. Yaglom® and Gurvich and Yaglom* have given
heuristic arguments in support of the third hypothesis.
These arguments have also been extended to scalar
fields (such as temperature concentration) or indeed any
positive-definite quantity associated with the small
scale structure of turbulence. The experimental verifi-
cation of this hypothesis is important since measured
properties of small scale turbulence, such as high or-
der moments of derivatives of velocity and temperature
fluctuations or high order moments of structure func-
tions of velocity and temperature, are usually com-
pared with predictions of the hypothesis.

In a previous paper,® all three components of the fluc-
tuating temperature dissipation y were measured si-
multaneously in the inner region of a fully developed
turbulent boundary layer at moderate laboratory Reyn-
olds numbers. The probability density of y or x,, the
average of x over a distance », was found to be more
closely (although not exactly) log-normal than the prob-
ability densities of the individual components. This re-
sult supported the suggestion by Gibson and Masiello®
that the log-normality of p(x,) excludes the possibility
of log-normal distributions for the individual compo-
nents and vice versa. It was also found® that assump-
tion (1) was valid for X, over a fairly large range of »
(in excess of a decade). In this paper, we present fur-
ther results on the statistics of x, or lnx, with a view to
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testing the implications of (1) and the log-normality of
X, with regard to the high order moments of x,. Calcu-
lated high order moments x—;‘ of x, show a power-law de-
pendence on (L/7), consistent with both Novikov’s’ the-
ory and the deductions from Kolmogoroff’s third hy-
pothesis. However, the exponents of the power-law are
significantly smaller (for »= 3) than those suggested by
the third hypothesis, and are within the bounds sug-
gested by Novikov.?

- EXPERIMENTAL PROCEDURES

All three components of the temperature dissipation
were measured with a four-wire probe (described in
Ref. 5), with each wire sensitive to temperature fluc-
tuation only. Instantaneous gradients of temperature
89/837 and 96/8z in directions normal and transverse to
the wall, respectively, were obtained from the approxi-
mate relations

86/8v ~ a6/Ay, 06/8z>A0/Az,

where Ay and Az are the separations, in the y and z di-
rections, respectively, between pairs of parallel wires
of the four-wire probe. The values of Ay and Az were
approximately equal to six times the Kolmogoroff length
scale n. The validity of these approximations is ascer-
tained in Ref. 5. The streamwise temperature gradient
86/ x was obtained with the use of Taylor’s hypothesis
from the temporal derivative of the signal from one of
the wires. Signals proportional to 86/9x, 86/3y, 80/3z
measured at several points in the inner region of a tur~
bulent boundary layer well downstream of a step change
in surface heat flux, were recorded on a Philips
ANALOG-7 FM tape recorder at a speed of 76.2 cm/
sec. At the measuring station, the velocity boundary
layer, which develops with a zero pressure gradient,
has a thickness & of 8.6 cm while the thermal layer
thickness is 6.6 cm. The free stream velocity U, is
9.45 m/sec and the Reynolds number based on the mo-
mentum thickness is 5730.

The tape recorder was played back at a speed of 2. 38
cm/sec and signals proportional to 86/ax, 38/3y, and
88/0z were digitized at a frequency of 630 Hz. This
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TABLE I. Turbulence Reynolds number
and integral length scale.

/6 R, L/s

0.06 134 0.285
0.12 153 0.394
0.18 169 0.470
0.24 175 0.541

corresponds to a real time frequency f, of 20160 Hz
which is somewhat larger than twice the maximum value
of the Kolmogoroff frequency at the measurement sta-
tion, Digital records used to compute statistics of x
comprised 332800 characters, equivalent to a real time
duration of 16.5 sec. Values of ¥, were determined by
averaging x over a time interval 7 which ranged from 1
to about 300 digital samples (1 sample is equivalent to
f;l sec). In the following sections, it is assumed that
X, is equivalent to X,, using one form of Taylor’s hy-
pothesis »=— Ur, where U is the local mean velocity.
Statistics of x, or Inx, are presented at four points { y/5
=0.06, 0.12, 0. 18, 0.24) in the fully turbulent part of

the layer. In this region, the turbulence Reynolds num-
ber R, = #2"/%x/v (x is the Taylor microscale #2'/2/

(ou/0x)2'/2, u is the streamwise velocity fluctuation) is
in the range 135 to 175. For convenience, it is assumed
that the isotropic relation L/x=R,/15 gives a good mea-
sure of the integral length scale L. Values of R, and L
are given in Table I.
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FIG. 1. Probability density function of x=(lnx, —lnx,)/o at
9/6=0.12, o, »/L=0.09; a, 0.23, g, 0.58. Solid curve is
the Gaussian with same mean and variance.,
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FIG. 2. Normalized fourth, sixth, and eighth order moments
of x as a function of averaging length scale ». %% v, /6
=0.06; O, 0.12; X, 0.24. x6/x1: o, y/6=0.06; o, 0.12; e,
0.24. x%/x%: m, 9/6=0.06; a, 0.12; +, 0.24,

PROBABILITY DENSITY OF x, OR Iny,

The probability density function of Ilny, is shown, in
semi-logarithmic coordinates, in Fig. 1 for y/5=0.12
and three values of »/L (0.09, 0.23, and 0.58). The
probability density p(x) is such that [ p(x) dx =1, where
x=(lny, - 1nx, }/o, Inx, and o being, respectively, the
measured mean and standard deviation of lny,. For p
greater than about 0.01, it is difficult to distinguish de-
partures of the measured p from the Gaussian probabili-
ty density. Departures are more noticeable for the
tails of the measured p and are consistent with the mea-
sured negative odd order moments of x. The trend of
the results in Fig. 1 is also observed at the other val-
ues of y/5 considered here. It should also be noted that
the equality In(x,/X) = - ¢2/2, implied by log-normality,
is very closely satisfied by experimental values of lny,
and ¢2 for all values of y/5.

Values of F, the flatness factor of (lnx, —m), are
shown in Fig. 2 together with the ratios 9—63/ x¥ and 976/
x%. For »/L~0.03, the normalized fourth, sixth, and
eighth order moments appear to be in close agreement
with the Gaussian values. In the range 0.03<»/L<1.0
the ratios x%/x* and x8/x% are somewhat smaller than
the corresponding Gaussian values of 35 and 5, respec-
tively. For »/L near unity, the agreement between even
order moments and Gaussian results is again reasonable
while odd-order moments (not shown here) are closer to
zero than those at /L=~ 0, 03.

The probability density of x, has been derived from
the probability density of lnx, using the relation p(x,)dyx,
= p{lnX,)d (lnX,) and is shown in semi-logarithmic coordi-
nates in Fig. 3 for »/L=0.09, 0.23, and 0.58 at y/5
=0.12. Also shown for comparison in this figure is the
log-normal probability density of x,

plx,)=(2m) /2 (x,0)™ exp| - (Inx, - InX, ) 2/20°] ()

for measured values of the mean and variance of lny,.
In Fig. 3 values of X, have been normalized by the mean
dissipation x (identical to X, ) and the values of p(x,) are
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FIG. 3. Probability density function of x, at y/6=10.12. o0,
———, /L =0.09; &, , 0.23; —+—+— @0, 0.58. Sym-

bols refer to measured values of p(x,) and curves to log-normal
distribution calculated for measured values of In X, and o2,

such that [;" p(x,)dx,=1. For all three values of »/L,
the log-normal density is a good approximation to the
measured p(x,) for X, 2 0.003, but is significantly higher
in the tail region than the measured values. The maxi-
mum value of the calculated p(x,/X) and the value of ¥,
at which it occurs are in good agreement with the log-~
normal values of p,,, = exp(o2)/o(2m)!/2 at x,/X,

= exp(- 302/2).

The variance o?, plotted vs InL/7 in Fig. 4 for all the
four values of y/6, exhibits a linear portion over a rela-
tively large range of /L (0.05=< L/¥ =0,75). This pro-
vides some a posteriovi justification for the use of the

FIG. 4. Variance of Inx, as a function of In (»/L). 0, y/6
=0,03;, o, 0.12, +, 0.18, a, 0.24.
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FIG. 5. Fourth and fifth order moments of x, using measured
and smoothed values of p{x,). 0, (x,/X%)! plx,); a, /%, )°
). ¥/6=0.12, »/L=0.58,

range 0.15 /L 0.6 in Fig. 1, although Kolmogoroff’s
theory was proposed for n<« » << L. As discussed in
Ref. 5, one of the advantages of using X instead of one
of its components, is to allow for a more meaningful
test of Kolmogoroff’s hypothesis in laboratory flows. In
this range of r/L, values of the constants 4 and u in
Eq. (1) are both approximately equal to 0.35. It should
be noted here that a different choice for the length scale
L would have resulted in a slightly different value of A
but would not have affected the good collapse of the data
in Fig, 4.

MOMENTS OF x,

High order moments ﬁ were computed from the prob-
ability density of x, with the use of the relation

Xy :j; xrplx,)dx, , (3)

for values of » ranging from 2 to 5. The integrand in
(3) shows good closure at large values of x, for values
of n=2 and 3. For n=4 and »=5, moments were ob-
tained by calculating the area under y "p(x) using either
actual or smoothed values of p (see Fig. 5). Both meth-
ods yielded almost identical values for the moments.

The assumption of log-normality for p(x,) leads to
moments y 7 given by the expression
¥ =X "exp{nlny, +zn%c?) . (4)

Defining F" as the ratio X 7/x ", (4) may be written as
F"=exp|3nln-1)o?]. (5)
With ¢? given by (1) and using the empirical result A

=1, Eq. (5) may be re-expressed as
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FIG. 6. High order moments of x, obtained for several values
of /L and /6. y/6=0.12: o, »/L=0.09; +, 0.23; e, 0.58.
y/6=0.18: a, #/L=0.08; v, 0.19; X, 0.50. 3/6=0.24: o,
y/L=0.07, m, 0.18; o, 0.46. Straight lines correspond to
values of u=10,35 ( ) and 0.30 (— —).

10g,F "= (n/2) (n — 1) logo(eL/7)* (6)

over a range of »/L for which (1) applies. A plot of ex-
perimental values of log,oF " vs (n/2)(n — 1)1ogo(eL/7)
should yield a universal straight line with a slope given
by the value of i provided that log-normality of p(x,) is
satisfied and that » is chosen to be in the range for which
Eq. (1) applied. Experimental values for F" (n=2 to

5), shown in Fig. 6, lie close to the line of slope u

=0, 35 for n=2 and 3, but deviate appreciably from this
line at larger values of ». This depature is consistent
with the observed depature (Fig. 3) of measured p(¥,)
from the log-normal probability density. All data points
lie relatively close to one another and there is no ob-
servable systematic influence of the averaging length 7
on the trend of the data.

We must emphasize, however, that although Eq. (6)
is applied here over an experimental range of » for
which Eq. (1) is valid, the condition << » << L is not
rigorously satisfied for the present low R, data. How-
ever, even at these low Reynolds numbers, measured
spectral densities of all three temperature gradients
are consistent with the concept of local isotropy for fine

10° 10 10

N/L
FIG. 7. Power law dependence of X}/x? on #/L (from bottom
to top) for n=2, 3, 4 and 5. 0, y/6=0.12; X, 0.18; 4, 0.24.
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TABLE II. Values of power-law index f,.

Kholmyanskii  Novikov Log-normal Bounds on g,
n  Present (Ref. 11) (Ref. 7) (4= 0,35) (Novikov_Ref. 7)
3  0.88 0.95 1.00 1.05 1.35
4 1.55 1.65 1.68 2,10 2.35
5 2.47 2.34 2.41 3.50 3.35

scale turbulence. While the measured skewness of 96/8z
is nearly zero, the measured skewness of 80/8x and

of 96/8y is of order unity. It may be argued, 8 however,
that the nonzero values of (26/3x) and of (86/4y)%, or at
least of the former, are not inconsistent with the con-
cept of local isotropy.

It should be noted that a particular form of plotting
used in Fig. 6 has been adopted by Frenkiel and Kleba-
noff ® who plotted logq {(8u/88)2" /[ (8u¢/ 88)2]"} vs n(n
~ 1)loggR, for values of n as high as seven. These au-
thors arrived at this method of plotting by considering
that =7 and assuming that, at very large Reynolds
numbers, A in Eq. (1) may be neglected so that ol
« InR3*/2, Most of the data used in Ref. 9 was, how-
ever, obtained from relatively low Reynolds number
grid and boundary layer turbulence, but the atmospheric
data (» =2) used in the plot were shown to be consistent
with the trend of the laboratory data, a result which ap-
pears encouraging for the extrapolation of laboratory
data to large values of R,. Frenkiel and Klebanoff® ob-
tained a unique curve which departed increasingly with
increasing values of n{n — 1)log;yR, from a straight line
corresponding to a constant ;. They concluded that
their data were not therefore consistent with a constant
value of u, at least in the context of the assumed log-
normality of (8u/5t)2. The validity of this conclusion
cannot, however, be easily ascertained, in view of the
inapplicability of Eq. (1) when »=7 and because of the
observed departure of (ou/01)? from the log-normal be-
havior.

Equations (1) and (5) can be combined to yield a rela-
tion of the form

Froc(L/7)*n ("
with
pp=nln—1)u/2 (8)

when p(x,) is log-normal. Using very general argu-
ments of scale similarity,*® Novikov also arrived at a
relation similar to Eq. (7), but with the constraint that
La= u+n=2for n>2. Obviously, this bound is incon-
sistent with prediction (8) of the third hypothesis.

Figure 7 shows that, for a given »n, F" follows Eq. (7)
closely over a relatively wide range of »/L. The ex-
ponent u, is, however, lower than the log-normal value,
with the deviation becoming more pronounced as » in-
creases (see Table II). They are consistent with the
bounds given by Novikov and are in good agreement with
those obtained by Kholmyanskii'* who considered mo-
ments (au?at)zn in the atmospheric surface layer. Al-
though there is no a prioyi reason to assume that the
value of u is the same for scalar and velocity fields,
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the bounds on u, as given by Novikov would apply ir-
respective of the field used. Somewhat surprisingly,
both Kholmyanskii’s and the present values of i, are in
good agreement with Novikov’s” result

Ln=n—logy(n+1) (9)

at least for » >3. [For n=2, Eq. (9) yields u,=p

=0, 41, which is slightly larger than the present value. |
Novikov obtained Eq. (9) by applying
guments’ to the breakdown coefficient associated with

any non-negative field y (the breakdown coefficient is de-

fined as the ratio of values of y averaged over different
length scales within the scale similarity range) and by

choosing a rather simple form for the probability den-

sity of this coefficient.

CONCLUSIONS

It appears that the probability density of lny, is close
to normal even at a relatively small Reynolds number.
However, higher order moments of x, are significantly
lower than the values implied by the use of Kolmogo-
roff’s third hypothesis. This does not appear to be a
limitation of the Reynolds number of the flow, since
Kholmyanskii’s results obtained for one component of
€, in the atmosphere are also similar. In fact, Novi-
kov’s bounds on u, suggest that p(x,) will never be close
enough to log-normality to enable higher order mo-
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ale similarity ar-

ments to be calculable from Eq. (8).
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