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All three components of the dissipation rate of the fluctuating temperature 8 are measured simultaneously
in the inner region of a fully developed turbulent boundary layer at a moderate Reynolds number.

Measurements are made with a probe of four cold wires consisting of two closely spaced parallel vertical
wires mounted a small distance upstream of two closely spaced parallel horizontal wires. In the inner

region of the layer, local isotropy is not closely approximated [(36/62)*>.(36/3y)*>(38/3x)* 1. The

spectral density of the sum x[ = (36/9x)? +(86/3y)* +(26/8z)?] is similar in shape to that of

(36/3y)? or (96/3z)? , but not as rich in high frequency content as that of (86/8x)°. The

probability density of x has a lower skewness and flatness factor and is more closely log-normal than
those of the individual components. This is true regardless of whether x and its components are
unaveraged or locally averaged over a linear dimension r. When averaging is applied, departures from log-
normality are diminished but do not disappear entirely. The variance o’ of the logarithm of the locally
averaged x is proportional to In r over a wide range of r (#.,,/rn,==230), in contrast to the individual
components where this ratio may be as small as 2. The value of the Kolmogoroff constant p, determined
from the slope of 62 vsin r is about 0.35. This is consistent with the slope of the spectral density of x and
is also in agreement with previous best estimates of u, (and p) obtained at high Reynolds numbers.

1. INTRODUCTION

There has been a great deal of interest in the statis-
tics of the fine scale structure of turbulence, particu~
larly in view of the observed spatial intermittency of ¢,
the rate of dissipation of turbulent energy fluctuations,
Several models have been suggested which incorporate
this intermittency explicitly. Kolmogoroff ! and Obuk-
hov? hypothesized that ¢,, the average of € over a vol-
ume of linear dimension » (n<< << L, where 7 is the
Kolmogoroff length and L is an integral length scale of
turbulence) is log-normally distributed and that the vari-
ance of Ine, decreases linearly with Inv. Together
these are often referred to as Kolmogoroff’s third hy-
pothesis,

Several attempts have been made to verify this hy-
pothesis. They invariably assume that (5u/8x)2, the
squared streamwise velocity derivative, is representa-
tive of €. Since €=(v/2)(8u;/8x;+ du,/8x;)?, it is un-
reasonable to expect the statistics of instantaneous val-
ues of (8u/a8x)? to be representative of those of €. A
very important reason for this, as pointed out by Gib-
son and Masiello,? is that contributions tc € come large-
ly from cross terms when (8u/8x)? is small, which
makes (8u/9x)2 nonrepresentative of ¢. It, therefore,
follows that a valid check of Kolmogoroff’s third hypoth-
esis cannot be strictly made with information relating
to (9u/ax)?, particularly when (8u/8x)? is small.

A basis for Kolmogoroff’s hypothesis has been pro-
vided by the arguments put forward by Yaglom* and Gur-
vich and Yaglom.® Their arguments are equally appli-
cable to a locally averaged dissipation of scalar fluctua-
tions (see, e.g., Masiello®). In the case of temperature
fluctuations 6, the dissipation x =20(86/8x,)%, where a
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ig the thermal diffusivity, contains only three compo-
nents instead of the nine in €. Gibson and Masiello® ar-
gue that the components of x are of the same order of
magnitude for all x, and that the absence of cross terms
in ¥ makes a component of x such as (36/9x)® more
representative of x than (9x/9x)? is of €. While this is
true, the other objection raised by Gibson and Masiello
persists: The sum of several log-normal random vari-
ables need not be log-normal and vice versa, unless the
random variables are all identical (not merely in the
statistical sense). Therefore, a very good case exists
for testing Kolmogoroff’s hypothesis on X by measuring
all three of its components simultaneously.

In this paper, we present measurements of all three
components of X in a fully developed thermal boundary
layer. Section II contains details of the experimental
arrangement and technique, and an assessment of the
measuring techniques is given in Sec. III. In Secs. IV
and V, the statistics of xy and its components are ex~
amined in relation to Kolmogoroff’s third hypothesis,

1. EXPERIMENTAL ARRANGEMENT

The wind tunnel and the heating arrangement used for
the present investigations are described in Antonia ef
al,” Briefly, the tunnel has a 38 cm wide, 23 cm work-
ing section which is 4,9~-m long., The first 2 m of the
asbestos floor of the working section are unheated. The
remainder of the floor is the heated section made up of
identical spanwise strips of Inconel cemented to a Sin-
danyo base, connected in series. The floor is heated by
an ac source of 60 A at 8 V. About 30 min of tunnel
running time are required to establish stable and uni-
form heating conditions of constant surface heat flux,
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Measurements are made at a station x=190.5 cm (see
Fig. 1), where the thermal layer is fully submerged in
the velocity boundary layer. At the measuring station,
the thermal thickness 6, (where 99.5% of the total tem-
perature difference is attained) is 66 mm and the veloci-
ty boundary layer thickness & (where 99.5% of the free-
stream velocity is attained) is 86 mm, when the tunnel
is operated at a nominal free-stream velocity U, of
9.45 m sec™, Under these operating conditions, the
wall temperature T,, is about 12 °C above ambient and
the Reynolds number based on the momentum thickness
is 5730. Earlier measurements reported by Antonia et
al.” have established that the thermal boundary layer is
approximately self-preserving at x=190.5 cm.

All three components of temperature “dissipation”
fluctuations are obtained simultaneously with a four-
wire probe which consists of two horizontal wires paral-
lel to the wall, separated by a vertical distance of 1.2
mm, and two other parallel vertical wires normal to
the wall, separated by a horizontal spanwise distance
of 0.9 mm, The horizontal wires are mounted on a
modified miniature DISA X probe while the vertical wire
pair consists of two single wires, mounted on separate
right angle probes, and is located 0,6 mm in front of
the plane of the horizontal wires (see Fig. 2).

All temperature wires are made of 0.8 pm diam plat-
inum wires of about 0. 8 mm in length; they are oper-
ated “cold” at a constant current of 0.1 mA with the use
of four channels of a six-channel constant current ane~
mometer.” The low value of operating current insures
that the wires are sensitive only to temperature fluctua-
tions. The resistances of the two wires in either pair
(nominally about 650§2) are matched to within 3%.

The outputs of the two horizontal wires and the two
vertical wires are subtracted with the use of two DISA
55D26 signal conditioners, whose outputs are assumed
to be directly proportional to 84/8y and 86/9z, respec-
tively. The signal 96/ax is obtained by differentiating,
with respect to time, the output of the upper horizontal
wire and using Taylor’s hypothesis. (The coordinates
x and y are shown in Fig. 1, and z is in the spanwise
direction.) The extent of validity of these approxima-
tions is discussed in Sec, III. Root-mean-square val-
ues of the temperature signals, the differences, and the
time derivative are read on a DISA 55D35 rms meter,
Temperature signals from all four wires, the two tem-
perature differences and the derivative 86/9x are re-
corded on a Philips ANALOG 7 FM tape recorder at a
speed of 76.2 cm sec”l. The tape recorder response
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is flat up to 10 kHz while the maximum Kolmogoroff
frequency of the flow is 7.6 kHz. The tape recorder
has a dynamic range of +5 V and a nominal signal/noise
ratio of 40 dB.

Recorded signals are played back at a tape speed of
2.38 cmsec™, and signals proportional to 26/ax, 86/3y,
and 96/9z digitized at a frequency of 630 Hz. This corre-
sponds to a real time frequency of 20160 Hz, which is some-
what higher than twice the maximum value of the Kol-
mogoroff frequency at the measurement station. Digi-
tal records used to compute statistics of dissipation are
332 800 characters long, equivalent to a real time dura-
tion of 16,5 sec. Averaging of x or its components is
performed over a time interval varying between 1 and
300 digital samples (each digital sample =20 1607 sec).

The temperature coefficient of resistance of the wires
is found to be 0,0014°C™! by direct calibration in the po-
tential core of an axisymmetric jet heated to about 30 °C
above ambient temperature. The mean temperature
profile in the thermal layer is obtained by taking only
the dc output of one of the horizontal wires, which is
read out on a digital voltmeter,

IH. ERROR ESTIMATES

A. Interference effects

As mentioned in Sec. I, the three spatial derivatives
of temperature are approximated by

8,.=038/ax=~U"Yo6/3¢), (1)

6,=96/9y=(46),/ay , (2)
and

8,=00/0z~(46),/Az , (3

where U is the local mean velocity and the suffixes &

az=0.9mm

FLOW

FIG, 2, Schematic of the four-wire probe,
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and v refer to the horizontal and vertical wire pairs,
respectively. Equation (1) is assumed to be valid for
relatively small turbulence levels. For the other two
derivatives, the separation distances Ay and Az must
be small enough to justify approximations (2) and (3),
but large enough to avoid excessive interference effects.
(Incidentally, we note that, ailthough the vertical and
horizontal wire pairs bear a geometrical resemblance
to the X -wire configuration, the cross talk between the
two wires of an X probe of the type studied by Wyn-
gaard,® or the changes in sensitivity coefficient noted by
Strohl and Comte-Bellot,? are irrelevant to the present
study where no quantity is obtained by “synthesis” of
two signals, as in the case of an X wire,) An “opti-
mum” choice is made here and the “residual” inter-
ference effects are estimated.

First, consider the vertical wires which yield 6,.
The two possible ways in which they can be affected are
by mutual interference and by the aerodynamic effects
of the probe and prongs carrying the horizontal wires
(e.g., due to displacement of streamlines). For the
probe configuration used here, the streamwise distance
between the plane of the vertical wires and that of the
horizontal wires is about 3y, (where 5, is the so-called
Corrsin-Obukhov scale, =1, 28y, where 7 is the Kol-
mogoroff length scale) and is, therefore, small com-
pared with a scale characteristic of the flow develop-
ment, It is of interest to note that Champagne et al.®
studied the correlation between the intensities of two
hot wires, one of which was placed directly in the wake
of the other, and found that the optimum separation dis~
tance was about 3. 5n. The horizontal wires are sol-
dered at the tip of 8 mm long needles (<0.5 mm diam at
base) while the diameter of the supporting stem is 2
mm, It is thus unlikely that the aerodynamic effects
will be serious. In fact, Strohl and Comte-Bellot® have
investigated these effects on similar hot-wire X probes
and concluded that these effects will be less than 5% on
the hot-wire signals.

In relation to the influence of one wire on a neighbor-
ing wire, Tritton'! has observed that the intensity of a
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hot wire reading is seriously reduced by the presence
of another probe situated in its vicinity. For example,
close to the wall (y*=yU,/v=20), he noted as much as
a 30% reduction in the root-mean-square intensity of
streamwise velocity fluctuations sensed by a hot-wire
when an X-wire probe was placed in its vicinity. This
effect is considerably smaller with increasing distance
from the wall, Our nearest measurement to the wall is
at y*~ 120, where Tritton’s own estimates (which must
be considered to provide a conservative estimate for
the likely error, considering that the present probe has
a much slimmer stem and is farther away from the
sensing element than in Tritton’s case) suggest an error
in the root-mean-square intensity of the order of 5%.

However, the same assertion cannot be made of the
downstream influence of the vertical wires and their
supports on the horizontal wires. The signals from the
horizontal wires have therefore been examined without
the vertical wires, by varying the distance Ay between
them. (These data are referred to subsequently as the
two-wire data.) The purpose of the latter investigation
is to examine the effect on the signals of variable sepa-
ration distance and to obtain data from interference-
free probe, One wire is fixed close to the wall, while
the other is traversed directly above it by means of an
independent micrometer arrangement. Therefore, ex-
cept for the measurements closest to the wall (which are
discussed in the next section), the fixed wire is suffi-
ciently distant from the moving wire (approximate sepa-
ration distance being the height above the wall of the
moving wire) for the measurements of the latter wire
to be considered as free from interference.

Figure 3(a) gives a profile of ?3, the root-mean-square
value of § (normalized by the friction temperature 6,
=Q,/U,, where @, is the wall heat flux) obtained from
the two- and four-wire probes, with the same separa-
tion distance, Ay. (Here, @,=0.23 m sec™'°C and U,
=0.35 m sec™.) For y/56,50.75, it is clear that the
values obtained by the two horizontal wires of the four-
wire probe, while agreeing between themselves, are
10%-15% less than the corresponding two-wire probe
values. It is interesting to note, however, that they
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FIG, 4, Normalized probability density of 6, obtained with two-
wire and four-wire probes. ©, four-wire probe data; o, two-
wire probe data,

agree with the data of Antonia ef al.” who used a two-
wire probe similar to the present, with a fixed separa-
tion distance of the same order as in the present four-
wire probe. It is also worth noting that the average of
the vertical wire readings is in reasonable agreement
with the two-wire data thus partially confirming our
earlier conclusion that the vertical wire data are not
seriously affected. There are, however, no significant
differences among the various data for y2 0.755,. A
check on the derivatives [Fig. 3(b)] obtained from the
two-wire and four-wire data shows a reduction of the
same order in the root-mean-square values obtained by
the horizontal wires of the four-wire probe.

To examine whether the previous effects are brought
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FIG, 5. Effect of variation of vertical separation distance on

the moments of 6,. + and - indicate the separation distance and
the corresponding value of the moment, regpectively, for the
four-wire probe,
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TABLE 1. Bagsic flow parameter data at the measurement sta-

tion, 1, is the length of the wire,

y/o U/Ux r,- T)/Tw é/Tw 6: 6)' él Ry nﬂ/lw
(°C mm™)

0,06 0,61 0,78 0,110 0,54 0,61 0,70 135 0,20

0.12 0,68 0,85 0.085 0,43 0,46 0,49 153 0,22

0.18 0,71 0,89 0.074 0,34 0,37 0,40 169 0,25

0.24 0,75 0,91 0.065 0,28 0.30 0,34 175 0,27

about by a simple attenuation of the signal amplitude or
by more detailed changes in the statistical properties
of the signal, the probability density of 8, obtained, us-
ing Eq. (1), from the upper wire of the two-wire probe
is compared in Fig. 4 with that similarly obtained from
the upper horizontal wire of the four-wire probe. The
close agreement between them, except perhaps at the
peak, suggests that the presence of the pair of vertical
wires produces interference effects of a rather simple
nature on the horizontal wires of the four-wire probe
located downstream.

B. Effect of finite separation

Figure 5 shows the effect of the separation distance
Ay on the higher order moments of 6, obtained by Eq.
(2); the data are from the first few measurements close
to the wall made with the two-wire probe. The corre-
sponding separation distance (= 5.257,) and the mo-
ments for the four-wire data are also shown. Simple
extrapolation to Ay =0 suggests that with the four-wire
probe 5, is likely to have been underestimated by about
20%; the normalized third, fourth, and fifth order mo-
ments seem to be, respectively, about 80%, 50%, and
30% of the limiting values (Ay=0). Similar estimates
are also likely to hold for 6,. Note that the magnitude
by which 8, is attenuated (Fig. 4) is approximately 15%
(although for a different reason); consequently, the ra-
tios of the mean-square values are more reliable than
their absolute values. The root-mean-square values of
the three temperature derivatives, as well as some
other relevant flow parameters are listed in Table 1,

Changes are also noted in the probability density of
6, (Fig. 6) for different values of Ay, with the more
marked differences occurring essentially near the peak
and the tails (shown expanded in the insets). A prob-
ability density of 6, obtained from the four-wire probe
(with Ay of 5.257, equal to the maximum value for
which two-wire probe data are shown here), also plotted
in Fig. 6, shows a somewhat attenuated peak and cor-
respondingly longer tails than the probability density of
6, from the two-wire probe for the same Ay,

One interesting feature that emerges from Fig. 5 is
that the moments obtained from the four-wire probe are
closer to the limiting values (corresponding to Ay=0)
than the two-wire data with the same separation dis-
tance. The explanation for this fact is to be found in
Fig. 6, where the tails of the probability density for the
four-wire data (Ay=5, 257,) are seen to be closer to
those of two-wire data with Ay =37, It appears, there-
fore, that we have a fortuitous but beneficial cancella-
tion of the effects of interference and finite separation.
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Also examined in Fig, 7 are the spectral densities of
6, with varying &y. Clearly, there is an increased at-
tenuation in the high frequency range as Ay increases.
This attenuation is typically about 30% at a frequency
corresponding to 7,. Differences of the same order al-
so exist for spectral density of 05 (not shown here).

Thus, there are some identifiable effects of possible
probe interference on the four-wire probe data. Al-
though they are of some significance, these discrepan-
cies will later be shown to have no bearing on the con-
clusions of this work.

C. Effect of finite length of wire

Assuming isotropy and the Corrsin-Pao form for the
spectral density, Wyngaard'? estimated the wire re-
sponse as a function of wire length. His calculations,
with the value of 2 for the Kolmogoroff constant » as
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FIG. 7. Spectral density of 6, from two wire probe for differen
separation distances. o, Ay=5.257y &, 4,1n,; 0, 3N,
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recommended by Antonia, ** suggest that the wires used
here have their — 3 dB point at roughly twice the Kol-
mogoroff frequency. Wyngaard’s estimates for the
root-mean-square values of the dissipation show that
they may have been underestimated by at most 15%.
However, as some of the arguments used for these esti-
mates are questionable!® in this context, these correc-
tions have not been incorporated here. They can, if
necessary, be made using the appropriate 7, /7 values
quoted in Table 1.

IV. STATISTICS OF DISSIPATION FLUCTUATIONS

Before we examine the statistical properties of tem-
perature dissipation, we first note that there are
marked differences between the three components of
dissipation. In particular (see Fig. 8), 6, and 6, have
less high frequency content than 6, and are strongly
positively correlated. On the other hand, 6, is strongly
negatively correlated with 6, or 6,,

FIG. 8., Oscilloscope traces of 6,, 8, and 9,, in order from be-
low,
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A. Mean square values

Figure 9 shows the ratio of the root-mean-square
values of dissipation components. All measurements
for y £0. 66, show that 55 is consistently less than 07;,
which, in turn, is consistently less than 8%,

B. Probability density

Figure 10 shows normalized probability densities of
the individual as well as the sum x(= 62+ 62+ 62) of the
three components of dissipation, at a typical point (y/6
=0, 12) in the inner layer. The most striking feature
is that the sharp peak of the probability density func-
tions of the three components is almost absent in the
probability density of x. This feature is also reflected
by the skewness and flatness factors listed in Table II,
The table further contains a partial summary of re-
sults at other stations, including those on the three tem-
perature derivatives. The increase in the magnitude of
the skewness and flatness factors of the individual com-
ponents of dissipation with increasing y/6 is, perhaps
surprisingly, not apparent in the sum. It is also in-
teresting to note, particularly in the context of local
isotropy of small scale structure, that the skewness
values of #, and 6, are non-zero and of order unity,
while that of 6, is nearly zero.

C. Spectral density

The lower high frequency content of 62 and 6 2 com-
pared with that of 05 is clearly illustrated in the spec-
tra shown in Fig. 11. Since the two components 62 and
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FIG, 10, Normalized probability density of x and its compo-

ents. From left to right, a=x—x, 02—62, 6262 and 62-062.

62 have nearly the same spectra, it is reasonable to ex-
pect the spectral density of the sum of x to follow more
closely that of 62 and 62 than of 62, It may be argued
that the spectral differences between 62 and 62 or 62
are a consequence of the “differencing” technique em-
ployed in obtaining the two latter quantities. The tech-
nique requires a finite separation to exist between the
two wires, and we have seen that the high frequency
content of the difference increases with decreasing sep-
aration distance (see Fig, 7). However, no better tech-
nique seems to be available for measuring 6, and 6,.

To obtain a rough appreciation of the possible spectral
attenuation due to differencing, the spectral density at
a typical high frequency is obtained by simple minded
linear extrapolation to Ay =0 and indicated in Fig. 11

by a vertical bar for the 62 spectrum. Even after mak-
ing such a correction, it is clear that 62 is significant-
ly richer in high frequency than 62, This result is, in
fact, consistent!® with the concept of local isotropy.

D. Kolmogoroff's third hypothesis

Kolmogoroff ! postulated that, at “large” Reynolds
numbers, the logarithm of €, the turbulent energy dis-
sipation averaged over a volume of linear dimension »
(such that n< < L), has a variance o3, given by

0, (% )= A(x, 1)+ pIn(L/7)

where i is a universal constant and A depends on the
large scale structure of the turbulence. The problems
associated with the experimental verification of this hy-

TABLE II, Skewness and flatness factors of the three temperature derivatives, as well as of the individual components of tempera-

ture dissipation and of their sum.

Skewness Flatness factor
y/ 6 0, 6y b, 9:2: 03 OE X 6, ey 6, 0:2: 03 0% X
0,06 0,96 ~—0,96 0.07 7.48 5,94 6,05 3,03 9. 25 5,60 4,77 97, 87 57,70 63,55 20.10
0.12 1,00 =-1,25 -=0,02 8,05 5.99 6,95 3.34 9.48 6,56 7,00 103,38 51,75 82,19 21,96
0,18 0,90 -1,03 0,03 8,53 7.02 7,80 3.22 10, 26 6,77 7,60 120,01 76,94 100,10 21,34
0.24 0,94 ~1,09 -0,11 9,17 8,02 8,80 2,95 10,90 7.15 7.03 146,15 116, 98 127,50 19,96
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pothesis when only one component of €, is used, and the
appropriateness of testing it for x,, have been men-
tioned in Sec. 1. In the case of X,, the variance of Inx,
is assumed to be given by an expression similar to that
foro?, :

T T T LS LA B ”‘r"'—r\_l_r‘r—‘—
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1000

FIG, 12, Variation of ¢} with 7. (a) y/6=0,06, (b) y/6=0,12,
Region (ii) is shown in inset (expanded scale) for (a) 0, a=3;
s, X; 8, Y; 0, Z,
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05, (% 1) = Ag(X, 1) + pgIn(L/7) , )

where A, and L, need not be identical to A and pu, re-
spectively.

Consider the quantity

. —_—
1 1
X(r)=In= D (63),-1n =2 (83,

T =1 T j=1

two other similar quantities ¥ and Z (with x replaced by
v and 2z, respectively) and the quantity

T —_—r
1 1
Z(T):ln—ij-ln—-Zx,
T j=1 T j=1

for the sum x, where 7 is the number of sampling inter-
vals over which averaging is performed, and is a vari-
able, Averaging is done over mutually exclusive inter-
vals; i.e., if 7=N, the averages are taken from 1 to

N, from N+1 to 2N, etc. Although more sophisticated
methods of averaging can be used, this simple method
seems adequate here.

Figure 12 shows, for y=0.126, plots of the variances
of, 03, 02, and ¢% as a function of r. One noteworthy
feature of this plot is that variances of the components
are roughly equal and their magnitude is significantly
greater than that of their sum. (If all components are
identical, c2=02=0%=¢%.) Further as r increases,
they decrease at a more rapid rate than 0%. Secondly,
unlike o2 which obeys (4) over an extensive range of 7,
the individual variances exhibit some ambiguous fea-
tures. For example, at least two straight-line regions
exist, and the extent of both of these is one order of

magnitude smaller than that for the sum.

Before we consider these results further, it is nec-
essary to establish that they are unaffected by possible
shortcomings of the data (Sec. II). Figure 13 shows
that the variation of Ay does not affect 0%. The close
agreement between the four-wire and two-wire data
clearly proves that the differences observed in Fig. 6
are inconsequential with respect to the present discus-
sion. Further, we have found that varying the root-
mean-square values of one or two of the components
(by multiplying the component signals by non-unity fac-
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TABLE TII. Summary of the range of » for which Eq. (4) is valid for the component and total dissipation, and the respective values

of g,
»/7 [
y/8 X Y z p) X Y z b
(3 (ii) () (ii) @) (ii) )] (ii) i) (1) @) (i)

0.06 5-50  140-280 5-35 150-260 5-50  160-300 5-160 1,03 0.38 1,03 0,38 1.03 0.38 0.35
0.12 5-50 150—280 5-35 150-250 7-35  150—-250 7-180 0,99 0,44 1,05 0.40 0,92 0,42 0.36
0.18 8—60  150-280 4-20 150-260 6-20  140—-270 8—200 0,97 0,46 1,06 0.46 1,06 0.46 0.36
0.24 §-80 150—-250 6—40 150-250 6—-40  150—-250 6—300 1,00 0,41 0,95 0,37 0,93 0.42 0.35

tors before summing) does not affect the distribution of
o2 significantly.

To determine the possible effect of the variation in
the spectral content of the components on the variance
af; we first considered three bandpassed signals from
three different commercial random noise generators.
The output from one of them (say number 1} was played
through a bandpass filter set for 0-400 Hz while the
other two (numbers 2 and 3) were bandpass filtered for
0-160 Hz. The variances (computed for 7=1) of the
logarithm of the squares of these individual signals as
well as of the sum of the squares, taken two at a time
are as follows:

02=1.71, 0%=1.69, ¢2=1.63,
0%,=0.71, 0¢%,=0.68, ¢3,=0.70.

For turbulent signals X, ¥, Z (taken at y/06=0.12), the
analogous results are

c2=5.56, 0%=5.55, 0%=5.25,
02,0=2.65, 02.,-2.34, 0%,x=2.73.

Although the variance of the logarithm of the sum of the
components with similar spectral content (2 and 3 for
Gaussian noise and Y and Z for turbulence) is some-
what lower than the other two, the differences seem

to be marginal.

Table III summarizes the results for the range of
validity of Eq. (4) and values of y, in the inner layer.
For the sum, the slope is unique and p,=~0. 35 for all
stations. For the components, however, the value of
ug depends on the part of the o vs In» curve used for
fitting a straight line, For example, in region (i),
which covers the range 57< »< 507, the curves have a
slope of approximately - 1. In a second possible re-
gion (ii) in the range 15071 < »< 3007, it varies between
—0.38 and —-0.46. Thus, unless we are guided by an
independent criterion as to the relevant range of » to be
used (such as the inertial subrange on the spectra, for
instance), it is difficult to determine u, from the slopes
of the individual variances. Unfortunately, however, at
the laboratory Reynolds numbers, determination of the
inertial subrange for the spectra is generally equally
ambiguous, and is masked by several features such as
the digital “noise” or scatter in analog measurements,
We can therefore resort only to indirect arguments for
deciding the appropriate range of v, if it indeed exists,
for the components.
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Firstly, we note that region (i) is too close to the
viscous region to be of significance for the determina-
tion of 1. Secondly, the arguments of Yaglom, * which
relate u (or pg) to the slope of the inertial subrange of
the dissipation spectra, do not distinguish between the
components and the sum. Purely from dimensional
considerations, the slopes of the spectra of the compo-
nents and their sum must be the same in a well-defined
inertial subrange where it exists. Thirdly, while ol
<o2~gi=~0% we note that for sufficiently large 7/7,
0% o2, and o2 all approach ¢% from above (Fig. 12).
This suggests that in the limit of infinite Reynolds num-
pers, where the relevant region of r is substantial, the
values of u {(or p,) for the components approach (also
from above) that for the sum. As the Reynolds number
is reduced, however, it is conceivable that this region
of nearly identical slopes shrinks, and that any straight
line region that exists for the components will only yield
an upper bound for p. There is, however, no basic
reason to expect the constant u {or u,) to be vastly dif-
ferent for the components and the sum, The region i)
which gives apparently contradictory results must there-
fore be considered to be of no significance in this con-
text.

The range of validity of Eq. (4) extends for 57<7
< 1507 typically (a factor of 30 in 7) for the sum, as
against a narrower range of 150n <7< 300y (a factor of 2
in 7) for the components. This and the comparatively
unique determination of y, for the sum are some of the
advantages of working with x instead of its components,

Slopes of — 0., 65 (appropriate to i,=0.35) and - 0. 54
(appropriate to ug=0.46) are drawn in Fig. 11. There
exists a small range of frequencies (corresponding to
6n — 157) in the spectrum of the sum of which the slope
is consistent with p,=0.35. The reason for the lower
end (in terms of frequency) of this “inertial subrange”
being much smaller than that evidenced in Fig. 12 is
perhaps the high frequency attenuation of 62 and 62 due
to the differencing; it is also possible that the require-
ments of high Reynolds number flow are more stringent
for Yaglom’s extension than for Kolmogoroff’s third
hypothesis (4). There is, in fact, no perceptible region
with the “correct” slope for the individual spectral In
fact, a closer look at the spectra of the components
suggests regions (in the lower frequency end) where the
slope is some other constant, giving a spuriously high
value for p,. This emphasizes the danger of determin-
ing i (or p,) from the individual spectra obtained at low
Reynolds numbers.
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TABLE 1V, Different estimates obtained for u or p,.

Investigators Method Flow por pg
Gurvich and Zubkovskiil? Slope of (8w/8x)* spectrum Atmospheric data, height 4 m 0.38
Pond ¢t al.? Slope of (8x/8x)? spectrum 0,38
Pond and Stewart?! a. Slope of (8x/8x)? spectrum Ocean data, height 1.5 m 0.38+0, 02
b. Damped by low pass filter 0.62+0,02
Gurvich and Yaglom® Slope of variance® of (36/8x)> Atmospheric data, surface layer 0.4
against »
Sheih ot al, 1 Slope of (8uz/9x) spectrum Atmospheric data
R, = 2280-5330 0.70
Stewart et al.? Slope of (3u/8x)? spectrum Ocean data, height 2 m 0.35
Gibson et al, % a. Slope of (8u/2x)? spectrum Ocean data, height 2-12 m 0.51+0,02
b. From Kolmogoroff’s third Ocean data, height 2—12 m 0.44+0,25
hypothesis » =7
Wyngaard and Tennekes!® Slope of the (8x/9x)? spectrum Curved mixing layer, R,= 200 0,85
Gibson and Masiello® From slope of variance of (&u/ ax)E Ocean data, height 30 m 0,47+0,03
against ». From 3¢%/ln . 0,49+0,20
Friehe et al,% Slope of (8u/8x)? spectrum Round jet, R,= 540 0.5
Masiello® From the slope of (8u/8x)? and Atmospheric data from » and 8 0.47-0.58
(86/8x)? against », heated jet for 6
Antonia and Van Attal? Slope of the variance of (8x/ 8x)ﬁ Heated jet, R, =200 0,72
and (89/8;5)3 against »,
Present Slope of op2 against », Heated boundary layer, R, = 150 0.35
Slope of oy2, oy2, 072 against », 0.38-0,46

2Suffix + indicates averaging over a volume of linear dimension ».

®¢? is the variance of In[(8u/8t)%/(8x/80%1, and n =(8/a)’.

To check whether the present estimates of i, are
consistent with those for u and u, obtained by several
different methods in the literature, %187 they are com-
pared in Table IV, which is essentially an updated ver-
sion of that given by Gibson and Masiello.® Although
values of the “universal” constant u (or u,) covers a
broad band, a less pessimistic picture emerges if the
table is viewed in the light of our previous discussion.
Wyngaard and Tennekes!® obtained 0. 85 from the slope
of the spectrum of (82/9¢)2 at R,~200 (R,=u)/v, where
X is the Taylor microscale). For reasons already ex-
plained, the procedure is unreliable at low Reynolds
numbers. Antonia and Van Atta’s!” data permit an
equally well defined slope of 0. 35 (for both p and p,) in-
stead of 0.70, over a different range of v/L; extending
the previous arguments to energy dissipation suggests
that this method is of doubtful validity when one compo-
nent of dissipation is used to determine p, at least for
low Reynolds number, without an independent indicator
of inertial subrange. The (9u4/9¢)2 spectra of Sheih ef
al.'® obtained at high Reynolds numbers in the atmo-
sphere exhibit too much scatter to permit a unique de-
termination of the slope. In fact, they admit many
slopes including - 0.6 (u=0.4). All other investigators
obtain values between 0,29 and 0. 59 for p and y, It
therefore appears that the best estimate available for
Mg (and indeed of p) lies between 0. 35 and 0. 50, and is
perhaps closer to the lower value, Thus, although no
basic reason can at present be given for u and u, to be
the same, experimental data seem to suggest that they
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are comparable.

E. Log-normality of dissipation

An independent assumption is the log-normality of
dissipation fluctuations. Gurvich and Yaglom® have
used plausible arguments to show that any positive defi-
nite quantity associated with the fine scale structure of
turbulence is also log-normal. Figure 14(a) shows the
probability of X, Y, Z, and ©. The probability densi-
ties of the dissipation components depart strongly from
log-normality, when unaveraged (i.e., r=1), This is
particularly evident in the tails when the measured
probability density is higher than the log-normal value,
At ~ 30, for example, the measured probability is one
order of magnitude higher. There appears to be no
well-defined region where the data follow the log-nor-
mal trend. The sum, on the other hand, displays a
fairly large range of o [approximately — 20 to 25, or
0.03 < P(x) <0.97, where P(x) is the cumulative prob-
ability of x]. There is good evidence, therefore, that
log~-normality is a better approximation for the sum
than for the components.

It is possible, however, to compute a standard devia-
tion, o, say, corresponding to lines of best fit on these
plots. For the components, the lines of best fit ex-
tended over the range 0.40<P<0, 98, and excluded
small (£~ 0. 30,) and large (230,, P2 0.98) values of
dissipation components. The ratio o,/0 is found to be
equal to 0. 825, 0.670, and 0. 963 in the case of X, Y,
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FIG. 14, Cumulative probability plots of the logarithm of dis-
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and Z, respectively.

Deviations from log-normality noted for =1 (no av-
eraging) tend to-diminish when local averaging is per-
formed, but do not disappear altogether. These depar-
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tures must be considered genuine, particularly in view
of the result due to Orszag * that an exactly log-normal
distribution for energy dissipation implies an indeter-
minacy of the moment problem, Data for 7=10 [Fig.
14(b)] show that there is a substantial log-normal region
for the components (- 2.50x <X<1.50x, ~1.50y<¥Y

< 1,50y, —30,<Z<20;) as well as the sum; for the lat-
ter, even the lowest probability that is recorded P
~5x107%) is very close (although not exactly equal) to
the log-normal value. We note that P(¥) shows the
worst departures for log-normality while P(Z) is gen-
erally fairly close to P(Z). The situation is essentially
unchanged (data are not shown here) for higher values
of 7.

Figures 15(a) and 15(b) show the skewness and flat-
ness factors, respectively, of X, Y, Z, and Z, as a
function of r. For 725, skewness and flatness factors,
are close but not quite equal to 0 and 3, respectively.
This figure reinforces our earlier conclusions that de-
partures from log-normality do exist at all », but di-
minish over a range of values of 7, and that these de-
partures are smaller for the sum than for the compo-
nents, and that the probability of 62 is closer to that of
the sum than the other two components.

An indication of the departures of 6% 62 62 andx

from log-normality can be obtained as follows. If these
quantities were exactly log-normal, their kurtosis
(=flatness factor - 3) must be related to the variance
o2 through the relation®

Ko =8 +6£% + 1588 +16£2 (5)

where a refersto X, ¥, Z, or T, and £,=exp(0c?)-1.
Values of K, computed from Eq. (5) using ¢% obtained
earlier (see Fig. 12), are plotted in Fig. 16, over a
range of 7, for y=0.126, This figure shows that at 7
=1, the measured kurtosis (listed in Table II) of the
components and the sum are several orders of magni-
tude lower than the value of K implied by Eq. (5). For
the sum, however, the implied K is much smaller than
for the components, but still two orders of magnitude
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FIG, 15, Skewness and flatness factors of logarithm of dis-

sipation and its components as a functionof 7. 0, I; 4, X; e,
Y; o, Z, (a) skewness, (b) flatness factor.
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FIG. 16, Variation with 7 of kurtosis K, as implied by log-nor-
mality of &, Measured values of ¢, are used. —, a=3;

y X s , Y; ., Z. Arrows refer
to values K, (with g, instead of ¢) at 7 =1,

higher than the measured values. When ¢, is used in-
stead of g, values of K (shown in Fig. 16 only at r=1)
are, although relatively lower than those evaluated
from ¢, still very much higher than the measured
values.

It may be argued that the previous comparison tends
to exaggerate the departure from log-normality of sta-
tistics associated with the dissipation field. Gibson et
al.?" and Gibson and Masiello, ® on the other hand, use
as basis for comparison the kurtosis (implied from the
assumed log-normality) for the derivative rather than
the square of the derivative. In Table V, a compari-
son is made for =1 between the implied value of the
flatness factor of 0,, 6,, 8, and the measured values.
Although the agreement is better than with K,, large
departures still exist, regardless of whether ¢ or ¢, is
used. This latter comparison, however, seems to be
physically less significant.

These implied values of K, suggest that the signals
which they represent are strongly intermittent with very
high amplitudes occurring over very short intervals of
time and hence require a relatively large number of
samples for obtaining reliable statistics. A crude esti-
mate for this number can be made if a highly spiked
random telegraph signal of very low intermittency vy is
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used to model these “spikes.” The flatness factor of
this signal is simply y™!. I the measured flatness fac-
tors of 62 9§, 62 and x are used for guidance, it fol-
lows that about 10* such peaks exist for the components,
and five times as many for the sum, in a typical sample
size used here. If the implied values of K, of Fig. 16
are used instead, only about 300 such peaks exist for
the sum with a significantly smaller number for the
components. It would appear, therefore, that an un-
reasonably large number of samples, of the order of
10" is required to obtain steady statistics for the com-
ponents. As reliable statistics for the sum can be ob-
tained with a reasonable number of samples, there is
an added advantage in dealing with x instead of its in-
dividual components.

V. CONCLUDING REMARKS

Before evaluating the statistics of the dissipation y,
an assessment has been made of the experimental ar-
rangement and techniques used to obtain the instanta-
neous components of x. The finite difference approxi-
mation to 6, and 6, is found to have some limitations,
whose overall effect shows up as a decrease in root-
mean-square values and an attenuation of the high fre-
quency end of the normalized spectra. Further, the
probability densities of 95 and 82 appear to be slightly
distorted. It is established, however, that these limi-
tations do not affect the conclusions of this paper, par-
ticularly those related to the statistics of x.

In the inner region of the boundary layer, the assump-
tion of local isotropy of small scale turbulence does not
seem to be a good approximation as E—f< Bf < 53 In the
outer layer, the mean values of the three components
of x are nearly equal. The probability density of x is
less skewed and has a lower kurtosis than that of its
components. The range of » over which Kolmogoroff’s
third hypothesis is valid for the sum is wide in extent
(*pax/ Ymin = 30) and is approximately one order of mag-
nitude larger than for the individual components. A
more definite possibility for the evaluation of the uni-
versal constant u, is therefore provided by the use of
the sum yx rather than the individual components of x.
The use of the individual components is somewhat am-
biguous in low R, flows and, at best, provides upper
bounds to the value of u, determined from the sum.

The requirement of high R, appears to be even more
stringent in the determination of u, from the slope of

TABLE V. Comparison between measured and implied (by log-
normality) flatness factors of 6,, 8,, 6,. Quantities in paren-
thesis at /5 =0, 12 are those obtained by using g, instead of g.

Flatness factor

0, 8, 6,

y/6 Measured Implied Measured Implied Measured Implied
0.06 9.25 448.9 5.60 388.5 4,77 179,3
0,12 9,48 259, 8 6.56 257.3 7.00 190,6
(43.9) (12, 1) (12, 0)
0.18 10,26 685,4 6,77 196.4 7.60 632.7
0.24 10,90 685, 4 7.15 253.9 7.03 186.6
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the dissipation spectrum in the inertial subrange. The
present estimates of 11, are about 0. 35 from the sum and
in the range of 0.38-0.46 from the components. These
are quite consistent with the “best” estimates for u,
(and ) available in the literature.

The probability density of x is closer to the log-nor-
mal distribution than those of its components. Depar-
tures from log-normality diminish when local averaging
is performed, but do not entirely disappear. Cumula-
tive probability plots highlight these differences. The
advantages of dealing with x instead of its components
cannot be over-emphasized and it is our intention to ex-
tend these measurements to the atmospheric surface
layer.
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