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The probability density functions of temperature in the intermittent regions of heated jet and wake flows
show a strong spike associated with the temperature of the unheated fluid. The fine structure of this spike
fits a Gaussian curve quite closely, and the area under this Gaussian gives an accurate measure of 1—y
where v is the intermittency factor. The standard deviation of the Gaussian is a measure of the noise due
to residual temperature fluctuations in the free-stream and the electronic noise in the measurement system.
The accuracy with which the intermittency can be determined is limited by the signai-to-noise ratio.

INTRODUCTION

The intermittency factor y is defined as the probabil-
ity that a given flow is turbulent at a given point. The
determination of intermittency in free turbulent flows
and boundary layers has been of considerable interest
and study.'™® When working with velocity signals from
hot-wire anemometers, the discrimination of nonturbu-
lent fluid from turbulent fluid is complicated by potential
motions induced in the nonturbulent fluid by the pres-
sure fluctuations. When working with temperature sig-
nals, there are no such induced temperature fluctua-
tions in the nonturbulent fluid, but discrimination is
still complicated by the noise due to residual tempera-
ture fluctuations originating from the source of this
fluid and to electronic noise. (Here we leave aside the
interesting question of whether the interface for a scalar
contaminant is, in fact, the same as that for turbulence,
i.e., vorticity fluctuations,) Analog circuits used to
discriminate between turbulent and nonturbulent fluid
employ a voltage threshold which must be exceeded for
a specified hold time, Various methods have been used
to determine correct values for the threshold voltage
and hold time, but they all involve some degree of sub-
jectivity on the part of the investigator. Antonia ef al.®
indicate that when working with temperature directly
only the threshold should be used.

The digital processing of turbulence signals has al-
lowed accurate measurement of the probability density
functions of scalar quantities, such as temperature and
concentration (see Bilger,” for a recent review of this
data). In the intermittent region of free turbulent flows
the probability density functions of temperature show a
strong spike associated with the occurrence of unheated
(nonturbulent) fluid, Here, we examine the structure of
this spike and show how it can be used to make an accu-
rate determination of intermittency.

PROBABILITY DENSITY FUNCTION STRUCTURE

Figures 1 and 2 show the data of LaRue and Libby®
for the probability density functions of temperature in
the wake of a slightly heated cylinder at an x/d of 400
and at y/I, =0.349 and 0.431 (I, =Vxd, d is the cylinder
diameter), LaRue and Libby give values of the inter-
mittency, ¥ =0.509 and 0.175 for these two cases. The
insets in the figures show the spike structure, It can
be seen that the spikes follow a Gaussian curve very
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closely. In the absence of free stream temperature
fluctuations and electronic noise we would obtain a Dirac
delta function for that part of the probability density
function associated with the free stream; the integral

of this delta function would be equal to the probability

of occurrence of unheated fluid, 1 -vy. In the presence
of free-stream temperature fluctuations and electronic
noise the delta function will be broadened and a Gauss-
ian shape will result if the noise due to these sources is
Gaussian; the area under this Gaussian will be equal to
1-7. The Gaussian curves fitted in Figs. 1 and 2 yield
values of v of 0.565 and 0,232, respectively. The
threshold settings required to obtain these values of the
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FIG. 1. Probability density function of temperature in wake of

heated cylinder showing detail of spike structure. Data of
LaRue and Libby. 8 x/d=400, v/1.=0.349. One digital bin cor-
responds to A8/07=8.12x1073; - fitted Gaussian;

—+-+- +threshold for y=0.509; -..—-—- threshold for y
=0.564, o data points.
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FIG. 2.

Probability density function of temperature in wake
of heated cylinder showing detail of spike structure. Data of
LaRue and Libby.® x/d=400, y/1,=0.431. One digital bin
corresponds to A§/67=1,192X107% ~————-—- fitted Gaussian;
—r——e threshold for y=0.175, —+-—++—..— threshold for y
=0.232; © data points.

intermittency are shown together with the values used
by LaRue and Libby. Experience with different people
carrying out the curve fitting indicates that the area

under the Gaussian (and hence 1 - ¥) can be determined

to better than £0.02 when there are about 10 points to
fit.

Since the turbulent and nonturbulent parts of the flow
are mutually exclusive, we may write

pe(8) =(1 = ¥) pf(8) +vpi(6) 1

where p4(6), p}(8), pi(8) are the actual probability den-
sity functions for the temperature 6 as a whole, in the
free stream, and in the turbulent fluid, respectively.
In the presence of noise in the measurement system the

measured probability density function pj' (6) will be, by
convolution:

B = [ H6- 0 a-npie)ivaields . @

Here, p3(6) is the probability density function of the
noise expressed in terms of temperature, If p5(6)
=6(6 - 6,), a Dirac delta function, and p}(6) is Gaussian
with standard deviation 6,, we have

70 =g exp[_ﬁggf_)z]
w ,[:Wlafﬂ-exl’[ 2(9 d)) ]Ps(¢)d¢ (3)

If the free stream has temperature fluctuations which
are Gaussian with a standard deviation 6;, then the first
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term on the right-hand side is modified by replaclng 9
by (6,2+6;2)!/2, If we have 6;2> 62, where 6; is the
standard deviation of the temperature in the turbulent
fluid only, then the noise will have no significant effect
on the second term: for the LaRue and Libby data the
signal-to-noise ratio exceeds 30 dB and this is well
satisfied., With these assumptions

( )

15(6) = [——9—,5—927]17-3 eXp[ )]+7’P3(9) . @

The approximation involved in Eq. (4) will be more
significant in the neighborhood of 8; where the contribu-
tion of p5(6) may, due to the influence of the noise, sub-
stantially overlap and cloud the behavior of p4(6) to

which the Gaussian is being fitted, This clouding should
be small if

5f+6’
€ Ef pheYdo<1-y, (5)
2

The behavior of p(6) is shown in Fig, 3. It appears
that when ¥ is low, p#(8) becomes very 1arge near 6,,
Accordingly, the value of the 1ntegra1 of p4(8) is shown
in Fig, 4. (In these figures 90 is the standard deviation
of 6 on the centerline so that all curves are for temper-
ature normalized by the same factors.) For the experi-
ments of LaRue and Libby, ® 6,/6;~0.025, i.e., center-
line signal-to-free-stream noise S/N=~32 dB (from here
onward we shall usually take 6, to include the contribu-
tion of 6;). The uncertainty in 1 -y (and hence ) will
also be of the order of €. From Fig. 4 it appears that
this uncertainty will be about 0. 01 which agrees with
experience in curve fitting in which the accuracy has
already been quoted as being better than +0,.02, This
level of uncertainty is well within that obtained by sub-
jective examination of the signal traces; LaRue* implies
that this is of the order of +0.05 in the range 0.15< ¥
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Probability density function of temperature within the
turbulent fluid only. Data of LaRue and Libby.8 0 is the mean
temperature of the free stream, and 6y the standard deviation
of temperature for measurement on the centerline.
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FIG. 4. Integrated probability within the turbulent fluid only.
Data of LaRue and Libby®. 8; and 8y defined as for Fig. 3.

<0.85.

The behavior of p4(6) near 8, shown in Fig. 3 is of
some interest. As depicted in Fig, 3 it appears that
there may be an asymptotic approach p(6)~= as 8 ~9,.
This would be consistent with the notion that the temper-
ature profile through the interface is asymptotic to the
free-stream temperature, a result commonly found in
steady-state solutions of conduction and diffusion prob-
lems. Such asymptotic behavior would mean that even
in the absence of noise, an arbitrary threshold temper-
ature must be chosen to define the boundary between
“heated” and “unheated” fluid, The “delta function as-
sociated with the free stream” would become broadened
on the heated side and convolution with a Gaussian would
no longer yield a Gaussian, The actual data for p,,‘(@) do
not in fact show an asymptote near 8 =5, as can be seen
in Figs. 1 and 2. Preliminary experience gained with
other flows indicates that a spike in p;(6) near §, is not
always found, even at low y. It may be that the temper-
ature profile through the interface changes sufficiently
abruptly to asymptote to the free stream temperature, so
that the boundary between “unheated” and “heated” fluid
is effectively defined at a threshold which i#* well be-
low 9! .

THE PROPOSED METHOD

In its simplest form the method for determining the
intermittency factor vy is as has already been indicated,
A Gaussian curve is fitted to the spike corresponding to
the free stream temperature and the area under the
Gaussian gives 1 — y. This is most conveniently car-
ried out with digitized data. A useful check on the fit is
obtained by determining the threshold Th such that

Th =

2o(6) d6 = f G(o)ab | )
where G(6) is the fitted Gaussian. Equation (6) may be
written

Th «

f [$s(6) — G(6)]d6 =f G(8)do . (7
.o Th

When this threshold is drawn on the plot, as in Figs. 1

and 2, the areas indicated by Eq. (7) should appear

equal. Of course, p,(0) is really a histogram when
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digitized data are used, and this fact can be important
if the number of points defining the spike is small.

Experience indicates that the points on the left-hand
side of the spike up to and including the peak are usually
a good fit to the Gaussian over the whole range of y. A
least squares routine could be used to obtain the fit with
the computer. This should be done fitting the exponen-
tial to p and not a parabola to log.p since in the latter
case, data for low p are over-emphasized., At least one
point on the right-hand side of the peak should always
be included to insure correct centering. There are
some indications that the noise is somewhat peakier
than Gaussian (i.e., kurtosis > 3) so that there are
dangers in trying to fit the Gaussian from one side alone.

Figure 3 and the discussion in the previous section in-
dicate that the attainable absolute accuracy is of the
order of $6,/6; and so very high signal-to-noise ratios
are desirable. This will require that a small bin size
be used to generate the probability density function so
that adequate resolution of the spike is obtained. If we
take the range of the full probability density function to
be 86, and we required a bin size of 0.4 6, then the
number of bins required is 20 6,/6,. The 1024 steps in
the usual 10 bit digitizer soon becomes the limiting fac-
tor.

It is a corollary of Eq. (2) that if the measurement
system gain remains unaliered, then 9:, {including the .
contribution from 9}) will remain constant across the
flow as will the probability density function of the “noise
spike”;

p;(e)sfp:(e—@pz(mw . @)

This can be determined unequivocally in the free stream,
and in the intermittent region only multiplication by 1

— v should be necessary to fit p;(8) to the spike. In
practice, variations in the direct current level of the
measurement system will often require that 6, be de-
termined by the fit as well as 1 -y, The point is that
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FIG. 5. Probability density function of temperature in the
axisymmetric heated turbulent jet in a co-flowing stream in-
vestigated by Antonia et al.® n=0.89, y=0.91.
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FIG. 6. Variation across the jet of the standard deviation of
nonturbulent fluid fluctuations normalized by the standard de-
viation of the whole signal on the center line. Data of Antonia
et al.’

8, is known, and it is not necessary to assume a Gauss-
jan. The cumulative probability distribution P(6) can
also be fitted in this way. The normal discriminating
circuit with hold time set to zero and varying the thresh-
old will yield an intermittency function whose average is
1- P(6). By varying the threshold in millivolt steps
near the free stream voltage it may be possible to gen-
erate P(6) over the range of the spike and so determine
the value of 1 — ¥ needed to fit the P(6) distribution found
in the free stream.

PRELIMINARY RESULTS FOR A HEATED JET

Only two of the probability density functions of LaRue
and Libby® were available to us in detailed digital form
(those shown in Figs, 1 and 2), Furthermore, the sys-
tem gain was altered in obtaining them. A preliminary
examination of the FM tape records of Antonia et al.®
has been made. These were digitized with a constant
system gain and probability density functions generated
with 128 equal bins each comprising 8 digital steps.

No record of the free stream noise was made., Exami-
nation of the probability density functions generated in-
dicated that the signal-to-noise ratio at 18 dB was con-
siderably poorer than that of LaRue and Libby® (=32
dB). It appears that a large part of this noise may have
arisen in digitizing the data. The data will be re~ana-
lyzed and presented more fully elsewhere. However,
some aspects of the “noisily” analyzed data are of par-
ticular interest and are presented here,

Figure 5 shows a typical probability density function
obtained in the heated jet in a co-flowing stream. The
left-hand spike corresponds to the free stream. This
spike is shorter and wider than would have been ob-
tained with less noise. Table I shows the values of ¥
obtained by fitting a Gaussian curve to this spike in the
manner outlined here, The numbers in parentheses
are obtained by a second person fitting the data. They
are compared with the values obtained by Antonia ef
al.® who set their value of the threshold by visual com-
parison of oscilloscope traces of the temperature signal
and intermittency function generated by the discrimi-
nator. These settings were confirmed by examining
the influence of the threshold on ¥ and f,; the chosen
threshold lay on a plateau for f, and on a not too steeply
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TABLE I. Comparison of intermittency values determined in
a heated jet.

N
2 Present work Antonia et al.®
0.296 0.990 0.993
0.444 0.988 ¢.986
0.592 0.983 0.971
0.889 0.913 0.902
1.037 0.808(0.792) 0.813
1.185 0.655 0.610
1.333 0.385(0.410) 0.452
1.481 0.277 0.280
1.555 0.176 0.187
1.629 0.129 0.117

21 is equal to »/L,, where L, is radius to the point where the mean
temperature is halfway between that at the center line and that
in the free stream.

varying region for y. The differences are most marked
at the two points near ¥ =0.5 where visual discrimina-
tion is most difficult and the present method is probably
most accurate, Even here, the agreement is well with-
in the precision (+0.05) mentioned earlier for the visu-
al method in this range. The agreement of the two dif-
ferent workers using the present method is within the
accuracy of %9,’,/93 which here works out to be 0. 06.
Figure 6 shows the variation of 6, across the flow; it is
seen to be essentially constant in agreement with the
discussion in the last section.

CONCLUSIONS

We have shown that the spike in the probability den-
sity function for temperature associated with the free-
stream fluid can be used to obtain an effective measure
of the intermittency factor y. The method is much less
subjective than other methods, and its precision is lim-
ited only by the signal-to-noise ratio of the temperature
signal,
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